Q. The value of $I = \int \limits^ \frac{\pi}{4}_{0}\left(tan^{n+1} x\right)dx + \frac{1}{2} \int \limits^ \frac{\pi}{2}_{0} tan^{n-1} \left(x / 2\right)dx$ is equal to
Solution:
Given,
$I=\int_ \limits{0}^{\pi / 4}\left(\tan ^{n+1} x\right) d x+\frac{1}{2} \int_{0}^{\pi / 2} \tan ^{n-1}\left(\frac{x}{2}\right) d x$
In second integral, put $t=\frac{x}{2}$
$ \Rightarrow d x=2 d t$
$\Rightarrow $ Also, when $x=0$ then $t=0$,
When $ x=\pi / 2, \text { then } t=\pi / 4$
Then, $I=\int_\limits{0}^{\pi / 4}\left(\tan ^{n+1} x\right) d x+\int_{0}^{\pi / 4} \tan ^{n-1} t d t $
$ I=\int_\limits{0}^{\pi / 4} \tan ^{n+1} x \cdot d x+\int_\limits{0}^{\pi / 4} \tan ^{n-1} x d x$
$\left\{\because \int_\limits{a}^{b} f(x) d x=\int_{a}^{b} f(y) d y\right\}$
$\Rightarrow I=\int_\limits{0}^{\pi / 4}\left(\tan ^{n+1} x+\tan ^{n-1} x\right) d x$
$\Rightarrow I=\int_\limits{0}^{\pi / 4} \tan ^{n-1} x \cdot\left(\tan ^{2} x+1\right) d x$
$\Rightarrow I=\int_\limits{0}^{\pi / 4} \tan ^{n-1} x\left(\sec ^{2} x\right) d x$
Put $t=\tan x$
$ \Rightarrow d t=\sec ^{2} x d x$
Also, when $x=0$, then $t=0$
when $x=\pi / 4$, then $t=1$
$I=\int_{0}^{1} t^{n-1} d t=\left[\frac{t^{n}}{n}\right]_{0}^{1}=\frac{1}{n}$
Questions from WBJEE 2013
2. The number of solutions of the equation $x+y+z = 10$ in positive integers $x,y,z$ is equal to
Binomial Theorem
4. If $\alpha$ and $\beta$ are the roots of $x^2 - x+1 = 0$, then the value of $\alpha^{2013} + \beta^{2013}$ is equal to
Complex Numbers and Quadratic Equations
Questions from Integrals
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023