Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Δ (x) |1& cos x&1 - cos x 1+ sin x& cos x &1+ sin x - cos x sin x sin x&1|, then ∫ limitsπ / 40 Δ(x)dx is equal to
Q. If
Δ
(
x
)
∣
∣
1
1
+
sin
x
sin
x
cos
x
cos
x
sin
x
1
−
cos
x
1
+
sin
x
−
cos
x
1
∣
∣
,
then
0
∫
π
/4
Δ
(
x
)
d
x
is equal to
1559
194
VITEEE
VITEEE 2014
Integrals
Report Error
A
4
1
24%
B
2
1
33%
C
0
38%
D
−
4
1
5%
Solution:
Δ
(
x
)
=
∣
∣
1
1
+
sin
x
sin
x
cos
x
cos
x
sin
x
1
−
cos
x
1
+
sin
x
−
cos
x
1
∣
∣
,
Applying
C
3
→
C
3
+
C
2
−
C
1
Δ
(
x
)
=
∣
∣
1
1
+
sin
x
sin
x
cos
x
cos
x
sin
x
0
0
1
∣
∣
=
cos
x
−
cos
x
(
1
+
sin
x
)
[
∵
expanding along
C
3
]
=
−
cos
x
.
sin
x
=
−
2
1
sin
2
x
∴
0
∫
π
/4
Δ
(
x
)
d
x
=
−
2
1
0
∫
π
/4
sin
2
x
d
x
=
−
2
1
[
−
2
c
o
s
2
x
]
0
π
/4
=
+
2
×
2
1
[
cos
2
π
−
cos
0
∘
]
=
4
1
(
0
−
1
)
=
−
4
1