JEE Main Physics Question Paper with Solution 2023 January 24th Shift 1 - Morning
A
A is true but $R$ is false
B
Both $A$ and $R$ are true and $R$ is the correct explanation of $A$
C
A is false but $R$ is true
D
Both $A$ and $R$ are true but $R$ is $N O T$ the correct explanation of $A$
Solution
Photodiodes are operated in reverse bias as fractional change in current due to light is more easy to detect in reverse bias.
A
$4 \,ms ^{-1}$
B
$8 \,ms ^{-1}$
C
$0.5 \, ms ^{-1}$
D
$2 \,ms ^{-1}$
Solution
From the given equation $k =8 \,m ^{-1}$
and $\omega=4 \,rad / s$ Velocity of wave $=\frac{\omega}{ k }$
$v =\frac{4}{8}=0.5\, m / s$
A
$10 F _1$
B
$8 F _1$
C
$\frac{F_1}{8}$
D
$\frac{F_1}{10}$
Solution
Force per unit length between two parallel straight
$ \text { wires }=\frac{\mu_0 i_1 i_2}{2 \pi d} $
$ \frac{F_1}{F_2}=\frac{\frac{\mu_0(10)^2}{2 \pi(5 cm )}}{\frac{\mu_0(20)^2}{2 \pi\left(\frac{5 cm }{2}\right)}}=\frac{1}{8}$
$ \Rightarrow F_2=8 F_1$
A
211 and 80
B
210 and 80
C
210 and 82
D
210 and 84
Solution
$ { }_{84}^{218} A \stackrel{\alpha}{\longrightarrow}{ }_{82}^{214} A _1 \stackrel{\beta^{-}}{\longrightarrow}{ }_{83}^{214} A _2 \stackrel{\gamma}{\longrightarrow}{ }_{83}^{214} A _3 $
${ }_{83}^{214} A _3 \stackrel{\alpha}{\longrightarrow}{ }_{81}^{210} A _4 \stackrel{\beta^{+}}{\longrightarrow}{ }_{80}^{210} A _5 \stackrel{\gamma}{\longrightarrow}{ }_{80}^{210} A _6$
A
A, B, D only
B
B only
C
A, C, D only
D
B, C only
Solution
(A) Stopping potential depends on both frequency of light and work function.
(B) Saturation current intensity of light
(C) Maximum KE depends on frequency
(D) Photoelectric effect is explained using particle theory
A
$4800 \, J$
B
$4320 \, J$
C
$4.32 \times 10^8 \, J$
D
$432000 \, J$
Solution
Work done $= P \Delta V$
$=3 \times 10^5 \times 1600 \times 10^{-6}$
$=480 J$
Only $10 \%$ of heat is used in work done.
Hence $\Delta Q=4800 J$
The rest goes in internal energy, which is $90 \%$ of heat.
Change in internal energy $=0.9 \times 4800=4320 J$
A
$\frac{1}{3}$
B
1
C
$\frac{1}{2}$
D
$\frac{1}{4}$
Solution
Modulation index
$ =\frac{\text { Amplitude of mod ulating signal }}{\text { Amplitude of carrier wave }} $
$ \mu=\frac{1}{2}$
A
Statement I is false but Statement II is true
B
Both Statement I and Statement II are true
C
Both Statement I and Statement II are false
D
Statement I is true but Statement II is false
Solution
Statement-I
$ T _1=-73^{\circ} C =200 K$
$T _2=527^{\circ} C =800 K$
$ \frac{ V _1}{ V _2}=\frac{\sqrt{\frac{3 RT _1}{ M }}}{\sqrt{\frac{3 RT _2}{ M }}}=\sqrt{\frac{ T _1}{ T _2}} $
$ =\sqrt{\frac{200}{800}}=\frac{1}{2}$
$V _2=2 V _1 \text { (True) }$
Statement-II
$PV = nRT$
Translational $KE =\frac{3}{2} nRT$ (False)
A
$\frac{1}{\omega}(\bar{K} \times \bar{E})$
B
$\omega(\overline{ K } \times \overline{ E })$
C
$\bar{K} \times \bar{E}$
D
$\omega(\overline{ E } \times \overline{ K })$
Solution
Magnetic field vector will be in the direction of $\hat{ K } \times \hat{ E }$
magnitude of $B =\frac{ E }{ C }=\frac{ K }{\omega} E$
Or $\overrightarrow{ B }=\frac{1}{\omega}(\overrightarrow{ K } \times \overrightarrow{ E })$
A
$1: 3 \sqrt{2}$
B
$2 \sqrt{2}: 1$
C
$3 \sqrt{2}: 2$
D
$1: \sqrt{2}$
Solution
Magnetic field due to current carrying circular loop on its axis is given as
$\frac{\mu_0 ir ^2}{2\left( r ^2+ x ^2\right)^{3 / 2}}$
At centre, $x=0, B_1=\frac{\mu_0 i}{2 r}$
At $x=r, B_2=\frac{\mu_0 i }{2 \times 2 \sqrt{2} r }$
$\frac{ B _1}{ B _2}=2 \sqrt{2}$
A
$6.25 \times 10^{-3} m$
B
$4 \times 10^{-3} m$
C
$4 \times 10^{-4} m$
D
$6.25 \times 10^{-6} m$
Solution
Elongation in wire $\delta=\frac{ F \ell}{ AY }$
$ \delta=\frac{250 \times 100}{6.25 \times 10^{-4} \times 10^{10}} $
$ \delta=4 \times 10^{-3} m$
A
$(4 \sqrt{3}-1) N$
B
$4(\sqrt{3}-1) N$
C
$(4 \sqrt{3}+1) N$
D
$4(\sqrt{3}+1) N$
Solution
Solving (1) and (2) we get.
$ 20 \sqrt{3}-T=4 T -20$
$ T =4(\sqrt{3}+1) N$
A
$I _4=\frac{8}{5} A$ and $I _5=\frac{2}{5} A$
B
$I _4=\frac{6}{5} A$ and $I _5=\frac{24}{5} A$
C
$I _4=\frac{2}{5} A$ and $I _5=\frac{8}{5} A$
D
$I _4=\frac{24}{5} A$ and $I _5=\frac{6}{5} A$
Solution
Equivalent resistance of circuit
$R _{ eq } =3+1+2+4+2$
$ =12 \Omega$
Current through battery $i =\frac{24}{12}=2 A$
$ I _4=\frac{ R _5}{ R _4+ R _5} \times 2=\frac{5}{20+5} \times 2=\frac{2}{5} A $
$ I _5=2-\frac{2}{5}=\frac{8}{5} A$
A
A-II, B-IV, C-III, D-I
B
A-III, B-IV, C-I, D-II
C
A-I, B-III, C-IV, D-II
D
A-III, B-I, C-II, D-IV
Solution
(A) Planck's constant
$ h v= E $
$ h =\frac{ E }{v}=\frac{ M ^1 L ^2 T ^{-2}}{ T ^{-1}}= M ^1 L ^2 T ^{-1}$
(B) $E = qV$
$V=\frac{E}{q}=\frac{M^1 L^2 T^{-2}}{A^1 T^1}=M^1 L^2 T^{-3} A^{-1} \text { (IV) }$
(C) $\phi$ (work function $)=$ energy
$= M ^1 L ^2 T ^{-2}$...(I)
(D) Momentum (p) = F.t
$=M^1 L^1 T^{-2} T^1$...(II)
$=M^1 L^1 T^{-1}$
A
Statement I is false but Statement II is true
B
Statement I is true but Statement II is false
C
Both statement I and Statement II are false
D
Both Statement I and Statement II are true
Solution
Statement-1
When elevator is moving with uniform speed $T=F_g$
Statement-2
When elevator is going down with increasing speed, its acceleration is downward.
Hence
A
19.6 N
B
9.8 N
C
4.9 N
D
8 N
Solution
Acceleration due to gravity at height $h$
$g ^{\prime}=\frac{ g }{\left[1+\frac{ h }{ R }\right]^2}$
So weight at given height
$mg ^{\prime}=\frac{ mg }{\left[1+\frac{ h }{ R }\right]^2}=\frac{18}{\left[1+\frac{1}{2}\right]^2}=8 N$
A
$emf =1 mV$
B
$emf =100 mV$
C
$emf =5 mV$
D
$emf =10 mV$
Solution
$ EMF =\frac{ d \phi}{ dt }=\frac{ BA -0}{ t } $
$ A =\pi r ^2=\pi\left(\frac{0.1^2}{\pi}\right)=0.01$
$ B =0.5 $
$ EMF =\frac{(0.5)(0.01)}{0.5}=0.01 \,V =10 \,mV $
A
Both Statement I and Statement II are true
B
Both Statement I and Statement II are false
C
Statement I is true but Statement II is false
D
Statement I is false but Statement II is true
Solution
$ \mu_{ a } \sin i _1=\mu_{ g } \sin \left(90- i _1\right)$
$ \tan i _1=\frac{\mu_{ g }}{\mu_{ a }}$
When going from glass to air
$\tan i _2=\frac{\mu_{ a }}{\mu_{ g }}=\cot i _1$
Hence
$i _2=\frac{\pi}{2}- i _1$
A
$68\, m$
B
$136\, m$
C
$192\, m$
D
$272\, m$
Solution
$H _{\max }=\frac{ v ^2}{2 g }=136\, m $
$ R _{\max }=\frac{ v ^2}{ g }=2 H _{\max } $
$ =2(136) $
$ =272\, m$
A
$k \sqrt{d}$
B
$1 \cdot 5 d \sqrt{k}$
C
$2 d \sqrt{k}$
D
$d \sqrt{k}$
Solution
$ F =\frac{1}{\left(4 \pi \varepsilon_0\right)} \frac{ q _1 q _2}{ kd ^2}(\text { in medium) } $
$ F _{\text {Air }}=\frac{1}{4 \pi \varepsilon_0} \frac{ q _1 q _2}{ d ^{\prime 2}} $
$ F = F _{ Air }$
$ \frac{ q _1 q _2}{4 \pi \varepsilon_0 kd ^2}=\frac{ q _1 q _2}{4 \pi \varepsilon_0 d ^{\prime^2}} $
$ d ^{\prime}= d \sqrt{ k }$
Answer: 12
Solution
$d _0$ at $27^{\circ} C \,\& \,d _1$ at $177^{\circ} C$
$ d _1= d _0(1+\alpha \Delta T )$
$d _1- d _0=5 \times 1.6 \times 10^{-5} \times 150 \,cm$
$ =12 \times 10^{-3} cm$
Answer: 40
Solution
$ \frac{1}{2} \times 2 \times v^2=10000 $
$\Rightarrow v^2=10000$
$ \Rightarrow v =100\, m / s $
$ \Rightarrow v = at = a \times 5=100 $
$ \Rightarrow a =20\, m / s ^2 $
$ F = ma =2 \times 20=40 \,N $
Answer: 2
Solution
$R =\rho \frac{\ell}{ A }$, the cross-sectional area is $\pi\left( b ^2- a ^2\right)$
$ R =\rho \frac{\ell}{\pi\left( b ^2- a ^2\right)}=\frac{2.4 \times 10^{-8} \times 3.14}{3.14 \times\left(4^2-2^2\right) \times 10^{-6}} $
$ =2 \times 10^{-3} \Omega$
$\rightarrow n =2$
Answer: 11
Solution
$ \text { density of nuclei }=\frac{\text { mass of nuclei }}{\text { volume of nuclei }} $
$ \rho=\frac{1.6 \times 10^{-27} A }{\frac{4}{3} \pi\left(1.5 \times 10^{-15}\right)^3 A }$
$=\frac{1.6 \times 10^{-27}}{14.14 \times 10^{-45}}=0.113 \times 10^{18}$
$\rho_{ w }=10^3$
$ \text { Hence } \frac{\rho}{\rho_{ w }}=11.31 \times 10^{13} $
Answer: 1
Solution
For two perpendicular vectors
$ (a \hat{i}+b \hat{j}+\hat{k}) \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=0 $
$2 a-3 b+4=0$
On solving, $2 a-3 b=-4$
Also given
$3 a +2 b =7$
We get $a =1, b =2$
$ \frac{a}{b}=\frac{x}{2} \Rightarrow x=\frac{2 a}{b}=\frac{2 \times 1}{2}$
$\Rightarrow x=1$
Answer: 120
Solution
$ \frac{1}{ f _1}=(1.75-1)\left(-\frac{1}{30}\right)$
$\Rightarrow f _1=-40 \,cm $
$ \frac{1}{ f _2}=(1.75-1)\left(\frac{1}{30}\right) \Rightarrow f _2=40\, cm$
Image from $L_1$ will be virtual and on the left of $L_1$ at focal length $40 \, cm$. So the object for $L _2$ will be $80 cm$ from $L _2$ which is $2 f$. Final image is formed at $80\, cm$ from $L _2$ on the right.
So $x=120$
Answer: 2
Solution
$ a =\frac{ F }{ m }=\frac{ qE }{ m }=\left(2 \times 10^{11}\right)\left(1.8 \times 10^3\right) $
$ =3.6 \times 10^{14} m / s ^2 $
$ \text { Time to cross plates }=\frac{ d }{ v } $
$ t =\frac{0.10}{3 \times 10^7} $
$ y =\frac{1}{2} at ^2=\frac{1}{2}\left(3.6 \times 10^{14}\right)\left(\frac{0.01}{9 \times 10^{14}}\right) $
$=0.2 \times 0.01$
$ =0.002 \,m $
$=2 \,mm $
Answer: 10
Solution
$ \Delta \omega=\frac{ R }{ L }$
$ Q =\frac{\omega_0}{\Delta \omega}=\omega_0 \frac{ L }{ R }$
$\omega_0=\frac{1}{\sqrt{3 \times 27 \times 10^{-6}}}=\frac{1}{9 \times 10^{-3}} $
$ \frac{ Q }{\Delta \omega}=\frac{\omega_0 \frac{ R }{ R }}{\frac{ R }{ L }}=\omega_0 \frac{ L ^2}{ R ^2}=\sqrt{\frac{1}{ LC }} \frac{ L ^2}{ R ^2} $
$=\frac{1}{9 \times 10^{-3}} \times \frac{9}{100}=10\, s $
Answer: 110
Solution
$ I _{ cm }=\frac{2}{5} MR ^2 $
$ I _{ PQ }= I _{ cm }+ md ^2$
$ I _{ PQ }=\frac{2}{5} mR ^2+ m (10 cm )^2$
For radius of gyration
$ I _{ PQ }= mk ^2$
$ k ^2=\frac{2}{5} R ^2+(10 cm )^2$
$ =\frac{2}{5}(5)^2+100$
$ =10+100=110 $
$ k =\sqrt{110} cm $
$ x =110$
Answer: 5
Solution
$ F =-2 kx , a =-\frac{2 kx }{ m }, \omega=\sqrt{\frac{2 k }{ m }}=\sqrt{\frac{2 \times 20}{2}}$
$ =\sqrt{20} \,rad / s $
$ T =\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{20}}=\frac{\pi}{\sqrt{5}} $
$ x =5$
JEE Main Chemistry Question Paper with Solution 2023 January 24th Shift 1 - Morning
A
A only
B
$B$ and $C$ only
C
A and C only
D
A and D only
Solution
Vapour pressure (V.P.) of solvent is greater than
vapour pressure (V.P.) of solution.
Only solvent freezes.
A
A, B only
B
B, C only
C
B, C, E only
D
C, E only
Solution
According to Fajan's Rule,
A. $KF > KI$ - False; $LiF > KF$ - True
B. $KF < KI$ - True; $LiF > KF$ - True
C. $SnCl _4> SnCl _2-$ True; $CuCl > NaCl$ - True
D. $LiF > KF$ - True; $CuCl < NaCl -$ False
E. $KF < KI -$ True; $CuCl > NaCl -$ True
A
A-I, B-III, C-II, D-IV
B
A-III, B-IV, C-I, D-II
C
A-I, B-IV, C-II, D-III
D
A-IV, B-II, C-I, D-III
Solution
Reverberatory furnace: Used for roasting of
Copper.
Electrolytic cell : For reactive metal : Al
Blast furnace : Hematite to Pig Iron
Zone Refining furnace: For semiconductors : Si
A
These are radicals of chlorine and chlorine monoxide
B
These are chlorofluorocarbon compounds
C
All radicals are called freons
D
These are chemicals causing skin cancer
Solution
Fact
A
A-III, B-I, C-II, D-IV
B
A-II, B-III, C-IV, D-I
C
A-III, B-IV, C-I, D-II
D
A-II, B-I, C-III, D-IV
Solution
Chlorophyll : $Mg ^{+2}$ complex
Soda ash : $Na _2 CO _3$
Dentistry, Ornamental work : $CaSO _4$
Used in white washing : $Ca ( OH )_2$
A
$T_1^{2+}$
B
$Mn ^{2+}$
C
$V ^{2+}$
D
$Cr ^{2+}$
Solution
$ Cr ^{+2}:[ Ar ], 3 d ^4, 4 s ^0 n =4, \mu=\sqrt{4(4+2)}=\sqrt{24} $
$ =4.89\, BM $
$ Mn ^{+2}:[ Ar ], 3 d ^5, 4 s ^0 n =5, \mu=\sqrt{5(5+2)}=\sqrt{35} $
$ =5.91 \,BM $
$V ^{+2}:[ Ar ], 3 d ^3, 4 s ^0 n =3, \mu=\sqrt{3(3+2)}=\sqrt{15} $
$=3.87 \,BM $
$ Ti ^{+2}:[ Ar ], 3 d ^2, 4 s ^0 n =2, \mu=\sqrt{2(2+2)}=\sqrt{8} $
$ =2.82 \,BM $
A
$C >B >A$
B
$B > A >C$
C
$A=B >C$
D
$A >B> C$
Solution
Ice > Liquid water > Impure water
Due to impurity extent of H-Bonding decreases.
A
$Co ^{2+}$
B
$Fe ^{2+}$
C
$Ni ^{2+}$
D
$Cu ^{2+}$
Solution
$ Ni ^{+2}+2 DMG \xrightarrow{ NH _3( aq )}\underset{\text{Rosy Red complex }}{\left[ Ni ( DMG )_2\right]} $
A
$\left( NH _4\right) BeF _3$
B
$H _3 NBeF _3$
C
$\left( NH _4\right) Be _2 F _5$
D
$\left( NH _4\right)_2 BeF _4$
Solution
$ BeO +2 NH _3+4 HF \rightarrow\left( NH _4\right)_2 BeF _4+ H _2 O $
$ \left( NH _4\right)_2 BeF _4 \stackrel{\Delta}{\longrightarrow} BeF _2+ NH _4 F $
A
A is false but $R$ is tive
B
A is true but $R$ is false
C
Both $A$ and $R$ are true but $R$ is $N O T$ the correct explanation of $A$
D
Both $A$ and $R$ are true and $R$ is the correct explanation of $A$
Solution
The rate of hydrolysis of alkyl chloride improves because of better Nucleophilicity of $I^-$
A
Statement I is incorrect but Statement II is correct
B
Both Statement I and Statement II are correct
C
Statement I is correct but Statement II is incorrect
D
Both Statement I and Statement II are incorrect
Solution
Fact
A
2
B
3
C
1
D
$\frac{1}{2}$
Solution
According to Henry Moseley $\sqrt{v} \alpha z - b$
So $n =\frac{1}{2}$
A
$H _4 P _2 O _7$
B
$\left( HPO _3\right)_n$
C
$H _4 P _2 O _6$
D
$H _4 P _2 O _5$
A
$D , C , A , B$
B
C, D, A, B
C
D, C, B, A
D
$D , A , B$
Solution
No option is matching the correct answer. Order should be : C < A < B < D
A
3 and 5
B
2 and 6
C
2 and 8
D
3 and 6
Solution
$\left[ Co \left( NH _3\right)_5 Cl \right] Cl _2$
Oxidation number of $Co$ is $+3$.
So primary valency is $3$ .
It is an octahedral complex so secondary valency $6$
or Co-ordination number $6$ .
A
Statement I is false but Statement II is true
B
Both Statement I and Statement II are true
C
Statement I is true but Statement II is false
D
Both Statement I and Statement II are false
Solution
Statement I : For colloidal particles, the values of
colligative properties are of small order as
compared to values shown by true solutions at
same concentration. : True
Statement II : For colloidal particles, the potential
difference between the fixed layer and the diffused
layer of same charges is called the electrokinetic
potential or zeta potential. : True
Answer: 25
Solution
Mol. Wt of $C _4 N _2 H _4 O _2=112$
$\% N =\frac{28}{112} \times 100=25 \%$
Answer: 492
Solution
$\frac{1}{\left(\lambda_1\right)_{ P }}= R _{ H } Z ^2\left(\frac{1}{9}-\frac{1}{16}\right)$
$ \frac{1}{\left(\lambda_2\right)_{ P }}= R _{ H } Z ^2\left(\frac{1}{9}-\frac{1}{25}\right) $
$ \frac{\left(\lambda_2\right)_{ P }}{\left(\lambda_1\right)_{ P }}=\frac{\frac{7}{16 \times 9}}{\frac{16}{25 \times 9}}=\frac{25 \times 7}{16 \times 16} $
$ \left(\lambda_2\right)_{ P }=\frac{25 \times 7}{16 \times 16} \times 720$
$\left(\lambda_2\right)_{ P }=492 \,nm $
Answer: 917
Solution
$ Cr _2 O _7^{2-}+14 H ^{+}+6 e ^{-} \rightarrow 2 Cr ^{3+}+7 H _2 O$
$E =1.33-\frac{0.059}{6} \log \frac{(0.1)^2}{\left(10^{-2}\right)\left(10^{-3}\right)^{14}} $
$ E =1.33-\frac{0.059}{6} \times 42=0.917 $
$E =917 \times 10^{-3} $
$ x =917$
Answer: 10
Solution
Buffer of $HOAc$ and $NaOAc$
$ pH = pKa +\log \frac{0.1}{0.01} $
$ 5= pKa +1 $
$ pKa =4$
$ Ka =10^{-4}$
$ x =10$
Answer: 2
Solution
$ \Delta G =\Delta H - T \Delta S$
$A : \Delta G \left( J mol ^{-1}\right)=-25 \times 10^3+80 \times 300:- ve $
$ B : \Delta G \left( J mol ^{-1}\right)=-22 \times 10^3-40 \times 300:- ve$
$ C : \Delta G \left( J mol ^{-1}\right)=25 \times 10^3+300 \times 50:+ ve$
$ D : \Delta G \left( J mol ^{-1}\right)=22 \times 10^3-20 \times 300:+ ve$
Processes $C$ and $D$ are non-spontaneous.
Answer: 2
Solution
Benzylic and tertiary carbocations are stable
Answer: 7
Solution
$ Co ^{2+}: 3 d ^7 4 s ^0, Cl ^{-}: WFL $
Configuration $e ^4 t _2{ }^3: m =4$
Number of unpaired electrons $=3$
So, answer $=7$
Answer: 180
Solution
$ M=\frac{5}{40} \times \frac{1000}{450} $
$ M_1 V_1=M_2 V_2 $
$ \left(\frac{5}{40} \times \frac{1000}{450}\right) \times V_1=0.1 \times 500$
$V_1=180$
Answer: 3
Solution
$A : k =A A ^{-\frac{ Ea }{ RT }}$
As Ea increases k decreases
B : Temperature coefficient $=\frac{ k _{ T +10}}{ k _{ T }}$
Option (C) is wrong. $\Delta k$ may be greater or lesser depending on temperature.
$D: \ln k=\ln A-\frac{E a}{R T}$
Answer: 4
Solution
A : $Fe _{0.93} O \rightarrow Fe _2 O _3 $
$ nf =\left(3-\frac{200}{93}\right) \times 0.93$
$ nf =0.79 $
B: $2 x+(0.93-x) \times 3=2 $
$ x=0.79 $
$ Fe ^{2+}=0.79, Fe ^{3+}=0.21$
C : Fact
D : $\% Fe ^{2+}=\frac{0.79}{0.93} \times 100=85 \% ; Fe ^{3+}=15 \% $
JEE Main Mathematics Question Paper with Solution 2023 January 24th Shift 1 - Morning
A
$2-e$
B
e
C
1
D
3
Solution
$ \frac{d y}{d x}=\frac{1-x y}{x^3}=\frac{1}{x^3}-\frac{y}{x^2} $
$ \frac{d y}{d x}+\frac{y}{x^2}=\frac{1}{x^3} $
$ \text { If }=e^{\int \frac{1}{x^2} d x}=e^{-\frac{1}{x}}$
$y \cdot e^{-\frac{1}{x}}=\int e^{-\frac{1}{x}} \cdot \frac{1}{x^3} d x\left(\text { put }-\frac{1}{x}=t\right) $
$y \cdot e^{-\frac{1}{x}}=-\int e^t \cdot t d t $
$ y=\frac{1}{x}+1+C e^{\frac{1}{x}}$
Where $C$ is constant
Put $x=\frac{1}{2}$
$ 3- e =2+1+ Ce ^2$
$ C =-\frac{1}{ e }$
$y (1)=1$
A
$ \frac{23}{3}$
B
$\frac{22}{3} $
C
$9$
D
$ \frac{25}{3} $
Solution
$ y^2+4 x=4 $
$y^2=-4(x-1) $
$ A=\int\limits_{-4}^2\left(\frac{4-y^2}{4}-\frac{y-2}{2}\right) d y=9$
A
both (S1) and (S2) are true
B
only ( S 1) is true
C
only (S2) is true
D
both (S1) and (S2) are false
Solution
$\Omega=$ sample space
$A =$ be an event
If $P(A)=0 \Rightarrow A=\phi$
If $P ( A )=1 \Rightarrow A =\Omega$
Then both statement are true
A
${ }^{45} C _{24}$
B
${ }^{45} C_{23}$
C
${ }^{44} C _{23}$
D
${ }^{44} C_{22}$
Solution
$\displaystyle \sum_{r=0}^{22}{ }^{22} C _{ r } \cdot{ }^{23} C _{ r }=\displaystyle\sum_{ r =0}^{22}{ }^{22} C _{ r } \cdot{ }^{23} C _{23- r }$
$ ={ }^{45} C _{23}$
A
6
B
3
C
9
D
12
Solution
$\Delta=0=\begin{vmatrix}\alpha^2 & \alpha & 1 \\ 1 & 1 & 1 \\ a & b & c\end{vmatrix}$
$\Rightarrow \alpha^2(c-b)-\alpha(c-a)+(b-a)=0$
It is singular when $\alpha=1$
$ \frac{(a-c)^2}{(b-a)(c-b)}+\frac{(b-a)^2}{(a-c)(c-b)}+\frac{(c-b)^2}{(a-c)(b-a)}$
$ \frac{(a-b)^3+(b-c)^3+(c-a)^3}{(a-b)(b-c)(c-a)} $
$ =3 \frac{(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)}=3$
A
$n ^2$
B
$n ^2+ n$
C
$n$
D
$\frac{n(n+1)}{2}$
Solution
$ \displaystyle\lim _{t \rightarrow 0}\left(1^{\text{cosec}^2 t}+2^{\text{cosec}^2 t}+\ldots \ldots . .+n^{\text{cosec}^2 t}\right)^{\sin ^2 t} $
$ =\displaystyle\lim _{t \rightarrow 0} n\left(\left(\frac{1}{n}\right)^{\text{cosec}^2 t}+\left(\frac{2}{n}\right)^{\text{cosecs}^2 t}+\ldots \ldots . .+1\right)^{\sin ^2 t} $
$ = n $
A
$20 \sqrt{2}$
B
31
C
$13 \sqrt{2}$
D
26
Solution
Equation of line
$\frac{x+1}{3}=\frac{y-9}{-4}=\frac{z+16}{12}$
G.P on line $(3 \lambda-1,-4 \lambda+9,12 \lambda-16)$
point of intersection of line \& plane
$6 \lambda-2-12 \lambda+27-12 \lambda+16=5$
$\lambda=2$
Point $(5,1,8)$
Distance $=\sqrt{36+64+576}=26$
A
18
B
19
C
20
D
21
Solution
$ x+y+z=1$
$ 2 x+N y+2 z=2$
$ 3 x+3 y+N z=3$
$\Delta=\begin{vmatrix}1 & 1 & 1 \\2 & N & 2 \\3 & 3 & N\end{vmatrix}$
$ =( N -2)( N -3)$
For unique solution $\Delta \neq 0$
So $N \neq 2,3$
$\Rightarrow P ($ system has unique solution $)=\frac{4}{6}$
So $k =4$
Therefore sum $=4+1+4+5+6=20$
A
$f$ is continuous but not differentiable
B
$f$ is continuous but $f^{\prime}$ is not continuous
C
$f^{\prime}$ is continuous but not differentiable
D
$f$ and $f^{\prime}$ both are continuous
Solution
Continuity of $ f(x): f\left(0^{+}\right)=h^2 \cdot \sin \frac{1}{h}=0$
$ f\left(0^{-}\right)=(-h)^2 \cdot \sin \left(\frac{-1}{h}\right)=0 $
$ f(0)=0 $
$ f(x) $ is continuous
$ f^{\prime}\left(0^{+}\right)=\displaystyle\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\frac{h^2 \cdot \sin \left(\frac{1}{h}\right)-0}{h}=0 $
$f^{\prime}\left(0^{-}\right)=\displaystyle\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\frac{h^2 \cdot \sin \left(\frac{1}{-h}\right)-0}{-h}=0$
$f(x)$ is differentiable.
$f^{\prime}(x)=2 x \cdot \sin \left(\frac{1}{x}\right)+x^2 \cdot \cos \left(\frac{1}{x}\right) \cdot \frac{-1}{x^2}$
$f^{\prime}(x)=\begin{cases}2 x \cdot \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}$
$\Rightarrow f^{\prime}(x)$ is not continuous (as $\cos \left(\frac{1}{x}\right)$ is highly oscillating at $x=0$ )
A
4
B
3
C
2
D
$\frac{5}{2}$
Solution
Let $P$ is $\overrightarrow{0}, Q$ is $\vec{q}$ and $R$ is $\vec{r}$
$A$ is $\frac{2 \overrightarrow{ q }+\overrightarrow{ r }}{3}, B$ is $\frac{2 \overrightarrow{ r }}{3}$ and $C$ is $\frac{\overrightarrow{ q }}{3}$
Area of $\triangle PQR$ is $=\frac{1}{2}|\overrightarrow{ q } \times \overrightarrow{ r }|$
Area of $\triangle ABC$ is $\frac{1}{2}|\overrightarrow{ AB } \times \overrightarrow{ AC }|$
$\overrightarrow{ AB }=\frac{\overrightarrow{ r }-2 \overrightarrow{ q }}{3}, \overrightarrow{ AC }=\frac{-\overrightarrow{ r }-\overrightarrow{ q }}{3}$
Area of $\triangle ABC =\frac{1}{6}|\overrightarrow{ q } \times r |$ $\frac{\text{Area}(\triangle PQR )}{\text{Area}(\triangle ABC )}=3$
A
6
B
2
C
12
D
$-6$
Solution
$ pq ^2=\log _{ x } \lambda $
$ qr =\log _{ y } \lambda $
$p ^2 r =\log _{ z } \lambda$
$ \log _{ y } x =\frac{ qr }{ pq ^2}=\frac{ r }{ pq } \ldots \ldots .(1) $
$ \log _{ x } z =\frac{ pq ^2}{ p ^2 r }=\frac{ q ^2}{ pr } \ldots \ldots \ldots(2) $
$ \log _{ z } y =\frac{ p ^2 r }{ qr }=\frac{ p ^2}{ q } \ldots \ldots \ldots(3)$
$3, \frac{3 r }{ pq }, \frac{3 p ^2}{ q }, \frac{7 q ^2}{ pr } \text { in A.P } $
$\frac{3 r }{ pq }-3=\frac{1}{2}$
$ r =\frac{7}{6} pq\ldots \ldots \ldots(4)$
$ r = pq +1 $
$ pq =6\ldots \ldots \ldots(5)$
$ r =7 \ldots\ldots \ldots \ldots(6)$
$\frac{3 p ^2}{ q }=4$
After solving $p=2$ and $q=3$
A
$\frac{\pi}{2}$
B
$\frac{\pi}{2}$.
C
$\frac{\pi}{6}$
D
$\frac{\pi}{3}$
Solution
$ \tan ^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right)+\sec ^{-1}\left(\sqrt{\frac{8+4 \sqrt{3}}{6+3 \sqrt{3}}}\right)$
$ =\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)+\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\frac{\pi}{3}$
A
no solution
B
exactly two solutions in $(-\infty, \infty)$
C
a unique solution in $(-\infty, 1)$
D
a unique solution in $(-\infty, \infty)$
Solution
$ x ^2-4 x +[ x ]+3= x [ x ] $
$\Rightarrow x ^2-4 x +3= x [ x ]-[ x ] $
$ \Rightarrow( x -1)( x -3)=[ x ] .( x -1)$
$ \Rightarrow x =1 \text { or } x -3=[ x ]$
$ \Rightarrow x -[ x ]=3$
$ \Rightarrow\{ x \}=3 \text { (Not Possible) }$
Only one solution $x=1$ in $(-\infty, \infty)$
A
$x^2-4 x+1=0$
B
$x^2+4 x+1=0$
C
$x^2-4 x-1=0$
D
$x^2+4 x-1=0$
Solution
$ (1-\sqrt{3} i )^{200}=2^{199}( p + iq )$
$ 2^{200}\left(\cos \frac{\pi}{3}- i \sin \frac{\pi}{3}\right)^{200}=2^{199}( p + iq ) $
$ 2\left(-\frac{1}{2}- i \frac{\sqrt{3}}{2}\right)= p + iq$
$ p =-1, q =-\sqrt{3} $
$\alpha= p + q + q ^2=2-\sqrt{3}$
$ \beta= p - q + q ^2=2+\sqrt{3} $
$ \alpha+\beta=4 $
$ \alpha \cdot \beta=1 $
equation $x ^2-4 x +1=0$
A
$A ^2= I$ or $B = I$
B
$A ^2 B = BA ^2$
C
$AB = I$
D
$A ^2 B = I$
Solution
$ A ^2+ B = A ^2 B $
$ \left( A ^2- I \right)( B - I )= I $.......(1)
$ A ^2+ B = A ^2 B$
$A ^2( B - I )= B $
$A ^2= B ( B - I )^{-1} $
$ A ^2= B \left( A ^2- I \right) $
$ A ^2= BA A ^2- B $
$ A ^2+ B = BA ^2$
$ A ^2 B = BA ^2$
A
length of latus rectum $\frac{3}{2}$
B
length of latus rectum 2
C
directrix $4 x =3$
D
directrix $4 x=-3$
Solution
$ y ^2=24 x$
$ a =6$
$ xy =2 $
$ AB \equiv ty = x +6 t ^2$.......(1)
$ AB \equiv T = S _1 $
$ kx + hy =2 hk $.........(2)
From (1) and (2)
$\frac{ k }{1}=\frac{ h }{- t }=\frac{2 hk }{-6 t ^2}$
$\Rightarrow$ then locus is $y ^2=-3 x$
Therefore directrix is $4 x=3$
A
$5 \sqrt{2}$
B
$4 \sqrt{2}$
C
4
D
5
Solution
$=\begin{vmatrix}
x-2 & y+3 & z-1 \\
-3 & 4 & -3 \\
4 & -5 & 4
\end{vmatrix}=0$
$x-z-1=0$
Distance of $P (7,-3,-4)$ from Plane is
$d =\left|\frac{7+4-1}{\sqrt{2}}\right|=5 \sqrt{2}$
A
$((\sim P) \vee Q) \wedge((\sim Q) \vee P)$
B
$(\sim Q) \vee P$
C
$((-P) \vee Q) \wedge(-Q)$
D
$(-P) \vee Q$
Solution
Let $\quad r =(\sim( P \wedge Q )) \vee((\sim P ) \wedge Q ) ; \quad s =$
$((\sim P ) \wedge(\sim Q ))$
P
Q
$\sim(P \wedge Q)$
$(-P) \wedge Q$
r
s $r \to s$
T
T
F
F
F
F
T
T
F
T
F
T
F
F
F
T
T
T
T
F
F
F
F
T
F
T
T
T
Option (A) : $((\sim P ) \vee Q ) \wedge((\sim Q ) \vee P )$
is equivalent to (not of only $P) \wedge($ not of only $Q$ )
$=($ Both $P , Q )$ and (neither P nor $Q )$
P | Q | $\sim(P \wedge Q)$ | $(-P) \wedge Q$ | r | s | $r \to s$ |
---|---|---|---|---|---|---|
T | T | F | F | F | F | T |
T | F | T | F | T | F | F |
F | T | T | T | T | F | F |
F | F | T | F | T | T | T |
A
reflexive but not symmetric
B
transitive but not reflexive
C
symmetric but not transitive
D
neither symmetric nor transitive
Solution
Reflexive: $( a , a ) \Rightarrow \operatorname{gcd}$ of $( a , a )=1$
Which is not true for every a $\epsilon Z$.
Symmetric:
Take $a =2, b =1 \Rightarrow \operatorname{gcd}(2,1)=1$
Also $2 a =4 \neq b$
Now when $a =1, b =2 \Rightarrow \operatorname{gcd}(1,2)=1$
Also now $2 a =2= b$
Hence $a=2 b$
$\Rightarrow R$ is not Symmetric
Transitive:
Let $a =14, b =19, c =21$
$\text{gcd}(a, b)=1$
$\text{gcd}(b, c)=1$
$\text{gcd}(a, c)=7$
Hence not transitive
$\Rightarrow R$ is neither symmetric nor transitive.
A
1
B
2
C
$\frac{3}{2}$
D
$-\frac{2}{3}$
Solution
$\overrightarrow{ u }=(1,-1,-2), \overrightarrow{ v }=(2,1,-1), \overrightarrow{ v } \cdot \overrightarrow{ w }=2$
$ \overrightarrow{ v } \times \overrightarrow{ w }=\overrightarrow{ u }+\lambda \overrightarrow{ v } \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1) $
Taking dot with $ \overrightarrow{ w } \text { in }(1) $
$ \overrightarrow{ w } \cdot(\overrightarrow{ v } \times \overrightarrow{ w })=\overrightarrow{ u } \cdot \overrightarrow{ w }+\lambda \overrightarrow{ v } \cdot \overrightarrow{ w }$
$ \Rightarrow 0=\overrightarrow{ u } \cdot \overrightarrow{ w }+2 \lambda$
Taking dot with $\vec{v}$ in (1)
$ \overrightarrow{ v } \cdot(\overrightarrow{ v } \times \overrightarrow{ w })=\overrightarrow{ u } \cdot \overrightarrow{ v }+\lambda \overrightarrow{ v } \cdot \overrightarrow{ v }$
$ \Rightarrow 0=(2-1+2)+\lambda \cdot(6)$
$ \lambda=-\frac{1}{2} $
$ \Rightarrow \overrightarrow{ u } \cdot \overrightarrow{ w }=-2 \lambda=1$
Answer: 5
Solution
$ | x |^2-2| x |+|\lambda-3|=0$
$ | x |^2-2| x |+|\lambda-3|-1=0$
$ (| x |-1)^2+|\lambda-3|=1$
At $\lambda=3, x =0$ and 2 ,
at $\lambda=4$ or 2 ,
then $x =1$ or $-1$
So maximum value of $x+\lambda=5$
Answer: 546
Solution
For at most two language courses
$={ }^5 C _2 \times{ }^7 C _3+{ }^5 C _1 \times{ }^7 C _4+{ }^7 C _5=546$
Answer: 2
Solution
$I=\frac{8}{\pi} \int\limits_0^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023}+(\cos x)^{2023}} d x$......(1)
Using $\int\limits_0^a f(x) d x=\int\limits_0^a f(a-x) d x$
$I=\frac{8}{\pi} \int\limits_0^{\frac{\pi}{2}} \frac{(\sin x)^{2023}}{(\sin x)^{2023}+(\cos x)^{2023}} d x$........(2)
Adding (1) & (2)
$ 2 I =\frac{8}{\pi} \int\limits_0^{\frac{\pi}{2}} 1 dx$
$ I =2$
Answer: 14
Solution
Shortest distance between the lines
$=\frac{\begin{vmatrix}4 & 2 & -14 \\ 3 & 2 & 2 \\ 3 & -2 & 0\end{vmatrix}}{\begin{vmatrix}\hat{i} & \hat{ j } & \hat{ k } \\ 3 & 2 & 2 \\ 3 & -2 & 0\end{vmatrix}}$
$=\frac{16+12+168}{|-4 \hat{i}+6 \hat{j}-12 \hat{k}|}=\frac{196}{14}=14$
Answer: 12
Solution
$T _4=500 $ where $a =$ first term,
$r =\text { common ratio }=\frac{1}{ m }, m \in N$
$ a r^3=500 $
$ \frac{a}{m^3}=500 $
$ S_n-S_{n-1}=a r^{n-1}$
$ S_6>S_5+1$
and $S _7- S _6< \frac{1}{2}$
$S _6- S _5>1 \,\,\,\,\,\frac{ a }{ m ^6}<\frac{1}{2}$
$ar ^5>1 \,\,\,\, m ^3>10^3$
$\frac{500}{ m ^2}>1 \,\,\,\,\, m >10$...(2)
$m ^2< 500$.........(1)
From (1) and (2)
$m =11,12,13 \ldots \ldots \ldots \ldots ., 22$
So number of possible values of $m$ is $12$
Answer: 118
Solution
Equation of normal of ellipse $\frac{x^2}{36}+\frac{y^2}{16}=1$ at any point $P (6 \cos \theta, 4 \sin \theta)$ is
$3 \sec \theta x-2 \operatorname{cosec} \theta y=10$ this normal is also the normal of the circle passing through the point $(2,0)$ So,
$6 \sec \theta=10$ or $\sin \theta=0$ (Not possible) $\cos \theta=\frac{3}{5}$ and $\sin \theta=\frac{4}{5}$ so point $P =\left(\frac{18}{5}, \frac{16}{5}\right)$
So the largest radius of circle
$r=\frac{\sqrt{320}}{5}$
So the equation of circle $(x-2)^2+y^2=\frac{64}{5}$
Passing it through $(1, \alpha)$
Then $\alpha^2=\frac{59}{5}$
$10 \alpha^2=118$
Answer: 7
Solution
Equation of tangent at point $P (4 \cos \theta, 3 \sin \theta)$ is $\frac{ x \cos \theta}{4}+\frac{ y \sin \theta}{3}=1$
So $A$ is $(4 \sec \theta, 0)$ and point $B$ is $(0,3 \operatorname{cosec} \theta)$
Length $A B =\sqrt{16 \sec ^2 \theta+9 \operatorname{cosec}^2 \theta}$ $=\sqrt{25+16 \tan ^2 \theta+9 \cot ^2 \theta} \geq 7$
Answer: 1012
Solution
using result
$\displaystyle\sum_{ r =0}^{ n } r ^2\,\,{ }^{ n } C _{ r }= n ( n +1) \cdot 2^{ n -2}$
Then $\displaystyle\sum_{ r =0}^{2023} r ^2\,\,{ }^{2023} C _{ r }=2023 \times 2024 \times 2^{2021}$
$ =2023 \times \alpha \times 2^{2022} \text { So, } $
$ \Rightarrow \alpha=1012$
Answer: 22
Solution
$ 12 \int\limits_0^3\left| x ^2-3 x +2\right| dx $
$ =12 \int\limits_0^3\left|\left( x -\frac{3}{2}\right)^2-\frac{1}{4}\right| dx$
$ \text { If } x -\frac{3}{2}= t $
$ dx - dt$
$=24 \int\limits_0^{3 / 2}\left| t ^2-\frac{1}{4}\right| dt $
$ =24\left[-\int\limits_0^{1 / 2}\left( t ^2-\frac{1}{4}\right) dt +\int\limits_{1 / 2}^{3 / 2}\left( t ^2-\frac{1}{4}\right) dt \right]=22$
Answer: 60