JEE Main Question Paper with Solution 2023 January 24th Shift 1 - Morning

JEE Main Physics Question Paper with Solution 2023 January 24th Shift 1 - Morning

A

A is true but $R$ is false

B

Both $A$ and $R$ are true and $R$ is the correct explanation of $A$

C

A is false but $R$ is true

D

Both $A$ and $R$ are true but $R$ is $N O T$ the correct explanation of $A$

Solution

Photodiodes are operated in reverse bias as fractional change in current due to light is more easy to detect in reverse bias.

A

$4 \,ms ^{-1}$

B

$8 \,ms ^{-1}$

C

$0.5 \, ms ^{-1}$

D

$2 \,ms ^{-1}$

Solution

From the given equation $k =8 \,m ^{-1}$
and $\omega=4 \,rad / s$ Velocity of wave $=\frac{\omega}{ k }$
$v =\frac{4}{8}=0.5\, m / s$

A

$10 F _1$

B

$8 F _1$

C

$\frac{F_1}{8}$

D

$\frac{F_1}{10}$

Solution

Force per unit length between two parallel straight
$ \text { wires }=\frac{\mu_0 i_1 i_2}{2 \pi d} $
$ \frac{F_1}{F_2}=\frac{\frac{\mu_0(10)^2}{2 \pi(5 cm )}}{\frac{\mu_0(20)^2}{2 \pi\left(\frac{5 cm }{2}\right)}}=\frac{1}{8}$
$ \Rightarrow F_2=8 F_1$

A

211 and 80

B

210 and 80

C

210 and 82

D

210 and 84

Solution

$ { }_{84}^{218} A \stackrel{\alpha}{\longrightarrow}{ }_{82}^{214} A _1 \stackrel{\beta^{-}}{\longrightarrow}{ }_{83}^{214} A _2 \stackrel{\gamma}{\longrightarrow}{ }_{83}^{214} A _3 $
${ }_{83}^{214} A _3 \stackrel{\alpha}{\longrightarrow}{ }_{81}^{210} A _4 \stackrel{\beta^{+}}{\longrightarrow}{ }_{80}^{210} A _5 \stackrel{\gamma}{\longrightarrow}{ }_{80}^{210} A _6$

A

$4800 \, J$

B

$4320 \, J$

C

$4.32 \times 10^8 \, J$

D

$432000 \, J$

Solution

Work done $= P \Delta V$
$=3 \times 10^5 \times 1600 \times 10^{-6}$
$=480 J$
Only $10 \%$ of heat is used in work done.
Hence $\Delta Q=4800 J$
The rest goes in internal energy, which is $90 \%$ of heat.
Change in internal energy $=0.9 \times 4800=4320 J$

A

$\frac{1}{3}$

B

1

C

$\frac{1}{2}$

D

$\frac{1}{4}$

Solution

Modulation index
$ =\frac{\text { Amplitude of mod ulating signal }}{\text { Amplitude of carrier wave }} $
$ \mu=\frac{1}{2}$

A

Statement I is false but Statement II is true

B

Both Statement I and Statement II are true

C

Both Statement I and Statement II are false

D

Statement I is true but Statement II is false

Solution

Statement-I
$ T _1=-73^{\circ} C =200 K$
$T _2=527^{\circ} C =800 K$
$ \frac{ V _1}{ V _2}=\frac{\sqrt{\frac{3 RT _1}{ M }}}{\sqrt{\frac{3 RT _2}{ M }}}=\sqrt{\frac{ T _1}{ T _2}} $
$ =\sqrt{\frac{200}{800}}=\frac{1}{2}$
$V _2=2 V _1 \text { (True) }$
Statement-II
$PV = nRT$
Translational $KE =\frac{3}{2} nRT$ (False)

A

$\frac{1}{\omega}(\bar{K} \times \bar{E})$

B

$\omega(\overline{ K } \times \overline{ E })$

C

$\bar{K} \times \bar{E}$

D

$\omega(\overline{ E } \times \overline{ K })$

Solution

Magnetic field vector will be in the direction of $\hat{ K } \times \hat{ E }$
magnitude of $B =\frac{ E }{ C }=\frac{ K }{\omega} E$
Or $\overrightarrow{ B }=\frac{1}{\omega}(\overrightarrow{ K } \times \overrightarrow{ E })$

A

$1: 3 \sqrt{2}$

B

$2 \sqrt{2}: 1$

C

$3 \sqrt{2}: 2$

D

$1: \sqrt{2}$

Solution

Magnetic field due to current carrying circular loop on its axis is given as
$\frac{\mu_0 ir ^2}{2\left( r ^2+ x ^2\right)^{3 / 2}}$
At centre, $x=0, B_1=\frac{\mu_0 i}{2 r}$
At $x=r, B_2=\frac{\mu_0 i }{2 \times 2 \sqrt{2} r }$
$\frac{ B _1}{ B _2}=2 \sqrt{2}$

A

$6.25 \times 10^{-3} m$

B

$4 \times 10^{-3} m$

C

$4 \times 10^{-4} m$

D

$6.25 \times 10^{-6} m$

Solution

Elongation in wire $\delta=\frac{ F \ell}{ AY }$
$ \delta=\frac{250 \times 100}{6.25 \times 10^{-4} \times 10^{10}} $
$ \delta=4 \times 10^{-3} m$

A

$(4 \sqrt{3}-1) N$

B

$4(\sqrt{3}-1) N$

C

$(4 \sqrt{3}+1) N$

D

$4(\sqrt{3}+1) N$

Solution

image
Solving (1) and (2) we get.
$ 20 \sqrt{3}-T=4 T -20$
$ T =4(\sqrt{3}+1) N$

A

$I _4=\frac{8}{5} A$ and $I _5=\frac{2}{5} A$

B

$I _4=\frac{6}{5} A$ and $I _5=\frac{24}{5} A$

C

$I _4=\frac{2}{5} A$ and $I _5=\frac{8}{5} A$

D

$I _4=\frac{24}{5} A$ and $I _5=\frac{6}{5} A$

Solution

Equivalent resistance of circuit
$R _{ eq } =3+1+2+4+2$
$ =12 \Omega$
Current through battery $i =\frac{24}{12}=2 A$
$ I _4=\frac{ R _5}{ R _4+ R _5} \times 2=\frac{5}{20+5} \times 2=\frac{2}{5} A $
$ I _5=2-\frac{2}{5}=\frac{8}{5} A$

A

A-II, B-IV, C-III, D-I

B

A-III, B-IV, C-I, D-II

C

A-I, B-III, C-IV, D-II

D

A-III, B-I, C-II, D-IV

Solution

(A) Planck's constant
$ h v= E $
$ h =\frac{ E }{v}=\frac{ M ^1 L ^2 T ^{-2}}{ T ^{-1}}= M ^1 L ^2 T ^{-1}$
(B) $E = qV$
$V=\frac{E}{q}=\frac{M^1 L^2 T^{-2}}{A^1 T^1}=M^1 L^2 T^{-3} A^{-1} \text { (IV) }$
(C) $\phi$ (work function $)=$ energy
$= M ^1 L ^2 T ^{-2}$...(I)
(D) Momentum (p) = F.t
$=M^1 L^1 T^{-2} T^1$...(II)
$=M^1 L^1 T^{-1}$

A

Statement I is false but Statement II is true

B

Statement I is true but Statement II is false

C

Both statement I and Statement II are false

D

Both Statement I and Statement II are true

Solution

Statement-1
When elevator is moving with uniform speed $T=F_g$
image
Statement-2
When elevator is going down with increasing speed, its acceleration is downward.
Hence

A

19.6 N

B

9.8 N

C

4.9 N

D

8 N

Solution

Acceleration due to gravity at height $h$
$g ^{\prime}=\frac{ g }{\left[1+\frac{ h }{ R }\right]^2}$
So weight at given height
$mg ^{\prime}=\frac{ mg }{\left[1+\frac{ h }{ R }\right]^2}=\frac{18}{\left[1+\frac{1}{2}\right]^2}=8 N$

A

$emf =1 mV$

B

$emf =100 mV$

C

$emf =5 mV$

D

$emf =10 mV$

Solution

$ EMF =\frac{ d \phi}{ dt }=\frac{ BA -0}{ t } $
$ A =\pi r ^2=\pi\left(\frac{0.1^2}{\pi}\right)=0.01$
$ B =0.5 $
$ EMF =\frac{(0.5)(0.01)}{0.5}=0.01 \,V =10 \,mV $

A

Both Statement I and Statement II are true

B

Both Statement I and Statement II are false

C

Statement I is true but Statement II is false

D

Statement I is false but Statement II is true

Solution

image
$ \mu_{ a } \sin i _1=\mu_{ g } \sin \left(90- i _1\right)$
$ \tan i _1=\frac{\mu_{ g }}{\mu_{ a }}$
When going from glass to air
$\tan i _2=\frac{\mu_{ a }}{\mu_{ g }}=\cot i _1$
Hence
$i _2=\frac{\pi}{2}- i _1$

A

$68\, m$

B

$136\, m$

C

$192\, m$

D

$272\, m$

Solution

$H _{\max }=\frac{ v ^2}{2 g }=136\, m $
$ R _{\max }=\frac{ v ^2}{ g }=2 H _{\max } $
$ =2(136) $
$ =272\, m$

A

$k \sqrt{d}$

B

$1 \cdot 5 d \sqrt{k}$

C

$2 d \sqrt{k}$

D

$d \sqrt{k}$

Solution

$ F =\frac{1}{\left(4 \pi \varepsilon_0\right)} \frac{ q _1 q _2}{ kd ^2}(\text { in medium) } $
$ F _{\text {Air }}=\frac{1}{4 \pi \varepsilon_0} \frac{ q _1 q _2}{ d ^{\prime 2}} $
$ F = F _{ Air }$
$ \frac{ q _1 q _2}{4 \pi \varepsilon_0 kd ^2}=\frac{ q _1 q _2}{4 \pi \varepsilon_0 d ^{\prime^2}} $
$ d ^{\prime}= d \sqrt{ k }$

Answer: 40

Solution

$ \frac{1}{2} \times 2 \times v^2=10000 $
$\Rightarrow v^2=10000$
$ \Rightarrow v =100\, m / s $
$ \Rightarrow v = at = a \times 5=100 $
$ \Rightarrow a =20\, m / s ^2 $
$ F = ma =2 \times 20=40 \,N $

Answer: 2

Solution

$R =\rho \frac{\ell}{ A }$, the cross-sectional area is $\pi\left( b ^2- a ^2\right)$
$ R =\rho \frac{\ell}{\pi\left( b ^2- a ^2\right)}=\frac{2.4 \times 10^{-8} \times 3.14}{3.14 \times\left(4^2-2^2\right) \times 10^{-6}} $
$ =2 \times 10^{-3} \Omega$
$\rightarrow n =2$

Answer: 11

Solution

$ \text { density of nuclei }=\frac{\text { mass of nuclei }}{\text { volume of nuclei }} $
$ \rho=\frac{1.6 \times 10^{-27} A }{\frac{4}{3} \pi\left(1.5 \times 10^{-15}\right)^3 A }$
$=\frac{1.6 \times 10^{-27}}{14.14 \times 10^{-45}}=0.113 \times 10^{18}$
$\rho_{ w }=10^3$
$ \text { Hence } \frac{\rho}{\rho_{ w }}=11.31 \times 10^{13} $

Answer: 1

Solution

For two perpendicular vectors
$ (a \hat{i}+b \hat{j}+\hat{k}) \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=0 $
$2 a-3 b+4=0$
On solving, $2 a-3 b=-4$
Also given
$3 a +2 b =7$
We get $a =1, b =2$
$ \frac{a}{b}=\frac{x}{2} \Rightarrow x=\frac{2 a}{b}=\frac{2 \times 1}{2}$
$\Rightarrow x=1$

Answer: 120

Solution

$ \frac{1}{ f _1}=(1.75-1)\left(-\frac{1}{30}\right)$
$\Rightarrow f _1=-40 \,cm $
$ \frac{1}{ f _2}=(1.75-1)\left(\frac{1}{30}\right) \Rightarrow f _2=40\, cm$
Image from $L_1$ will be virtual and on the left of $L_1$ at focal length $40 \, cm$. So the object for $L _2$ will be $80 cm$ from $L _2$ which is $2 f$. Final image is formed at $80\, cm$ from $L _2$ on the right.
So $x=120$

Answer: 2

Solution

image
$ a =\frac{ F }{ m }=\frac{ qE }{ m }=\left(2 \times 10^{11}\right)\left(1.8 \times 10^3\right) $
$ =3.6 \times 10^{14} m / s ^2 $
$ \text { Time to cross plates }=\frac{ d }{ v } $
$ t =\frac{0.10}{3 \times 10^7} $
$ y =\frac{1}{2} at ^2=\frac{1}{2}\left(3.6 \times 10^{14}\right)\left(\frac{0.01}{9 \times 10^{14}}\right) $
$=0.2 \times 0.01$
$ =0.002 \,m $
$=2 \,mm $

Answer: 10

Solution

$ \Delta \omega=\frac{ R }{ L }$
$ Q =\frac{\omega_0}{\Delta \omega}=\omega_0 \frac{ L }{ R }$
$\omega_0=\frac{1}{\sqrt{3 \times 27 \times 10^{-6}}}=\frac{1}{9 \times 10^{-3}} $
$ \frac{ Q }{\Delta \omega}=\frac{\omega_0 \frac{ R }{ R }}{\frac{ R }{ L }}=\omega_0 \frac{ L ^2}{ R ^2}=\sqrt{\frac{1}{ LC }} \frac{ L ^2}{ R ^2} $
$=\frac{1}{9 \times 10^{-3}} \times \frac{9}{100}=10\, s $

Answer: 110

Solution

$ I _{ cm }=\frac{2}{5} MR ^2 $
$ I _{ PQ }= I _{ cm }+ md ^2$
$ I _{ PQ }=\frac{2}{5} mR ^2+ m (10 cm )^2$
For radius of gyration
$ I _{ PQ }= mk ^2$
$ k ^2=\frac{2}{5} R ^2+(10 cm )^2$
$ =\frac{2}{5}(5)^2+100$
$ =10+100=110 $
$ k =\sqrt{110} cm $
$ x =110$

JEE Main Chemistry Question Paper with Solution 2023 January 24th Shift 1 - Morning

A

A, B only

B

B, C only

C

B, C, E only

D

C, E only

Solution

According to Fajan's Rule,
A. $KF > KI$ - False; $LiF > KF$ - True
B. $KF < KI$ - True; $LiF > KF$ - True
C. $SnCl _4> SnCl _2-$ True; $CuCl > NaCl$ - True
D. $LiF > KF$ - True; $CuCl < NaCl -$ False
E. $KF < KI -$ True; $CuCl > NaCl -$ True

A

A-I, B-III, C-II, D-IV

B

A-III, B-IV, C-I, D-II

C

A-I, B-IV, C-II, D-III

D

A-IV, B-II, C-I, D-III

Solution

Reverberatory furnace: Used for roasting of Copper.
Electrolytic cell : For reactive metal : Al
Blast furnace : Hematite to Pig Iron
Zone Refining furnace: For semiconductors : Si

A

These are radicals of chlorine and chlorine monoxide

B

These are chlorofluorocarbon compounds

C

All radicals are called freons

D

These are chemicals causing skin cancer

Solution

Fact

A

A-III, B-I, C-II, D-IV

B

A-II, B-III, C-IV, D-I

C

A-III, B-IV, C-I, D-II

D

A-II, B-I, C-III, D-IV

Solution

Chlorophyll : $Mg ^{+2}$ complex
Soda ash : $Na _2 CO _3$
Dentistry, Ornamental work : $CaSO _4$
Used in white washing : $Ca ( OH )_2$

A

$T_1^{2+}$

B

$Mn ^{2+}$

C

$V ^{2+}$

D

$Cr ^{2+}$

Solution

$ Cr ^{+2}:[ Ar ], 3 d ^4, 4 s ^0 n =4, \mu=\sqrt{4(4+2)}=\sqrt{24} $
$ =4.89\, BM $
$ Mn ^{+2}:[ Ar ], 3 d ^5, 4 s ^0 n =5, \mu=\sqrt{5(5+2)}=\sqrt{35} $
$ =5.91 \,BM $
$V ^{+2}:[ Ar ], 3 d ^3, 4 s ^0 n =3, \mu=\sqrt{3(3+2)}=\sqrt{15} $
$=3.87 \,BM $
$ Ti ^{+2}:[ Ar ], 3 d ^2, 4 s ^0 n =2, \mu=\sqrt{2(2+2)}=\sqrt{8} $
$ =2.82 \,BM $

A

$C >B >A$

B

$B > A >C$

C

$A=B >C$

D

$A >B> C$

Solution

Ice > Liquid water > Impure water
Due to impurity extent of H-Bonding decreases.

A

$Co ^{2+}$

B

$Fe ^{2+}$

C

$Ni ^{2+}$

D

$Cu ^{2+}$

Solution

$ Ni ^{+2}+2 DMG \xrightarrow{ NH _3( aq )}\underset{\text{Rosy Red complex }}{\left[ Ni ( DMG )_2\right]} $

A

$\left( NH _4\right) BeF _3$

B

$H _3 NBeF _3$

C

$\left( NH _4\right) Be _2 F _5$

D

$\left( NH _4\right)_2 BeF _4$

Solution

$ BeO +2 NH _3+4 HF \rightarrow\left( NH _4\right)_2 BeF _4+ H _2 O $
$ \left( NH _4\right)_2 BeF _4 \stackrel{\Delta}{\longrightarrow} BeF _2+ NH _4 F $

A

A is false but $R$ is tive

B

A is true but $R$ is false

C

Both $A$ and $R$ are true but $R$ is $N O T$ the correct explanation of $A$

D

Both $A$ and $R$ are true and $R$ is the correct explanation of $A$

Solution

The rate of hydrolysis of alkyl chloride improves because of better Nucleophilicity of $I^-$

A

Statement I is incorrect but Statement II is correct

B

Both Statement I and Statement II are correct

C

Statement I is correct but Statement II is incorrect

D

Both Statement I and Statement II are incorrect

Solution

Fact

A

$H _4 P _2 O _7$

B

$\left( HPO _3\right)_n$

C

$H _4 P _2 O _6$

D

$H _4 P _2 O _5$

A

$D , C , A , B$

B

C, D, A, B

C

D, C, B, A

D

$D , A , B$

Solution

No option is matching the correct answer. Order should be : C < A < B < D

A

3 and 5

B

2 and 6

C

2 and 8

D

3 and 6

Solution

$\left[ Co \left( NH _3\right)_5 Cl \right] Cl _2$
Oxidation number of $Co$ is $+3$.
So primary valency is $3$ .
It is an octahedral complex so secondary valency $6$
or Co-ordination number $6$ .

A

Statement I is false but Statement II is true

B

Both Statement I and Statement II are true

C

Statement I is true but Statement II is false

D

Both Statement I and Statement II are false

Solution

Statement I : For colloidal particles, the values of colligative properties are of small order as compared to values shown by true solutions at same concentration. : True
Statement II : For colloidal particles, the potential difference between the fixed layer and the diffused layer of same charges is called the electrokinetic potential or zeta potential. : True

Answer: 25

Solution

Mol. Wt of $C _4 N _2 H _4 O _2=112$
$\% N =\frac{28}{112} \times 100=25 \%$

Answer: 492

Solution

$\frac{1}{\left(\lambda_1\right)_{ P }}= R _{ H } Z ^2\left(\frac{1}{9}-\frac{1}{16}\right)$
$ \frac{1}{\left(\lambda_2\right)_{ P }}= R _{ H } Z ^2\left(\frac{1}{9}-\frac{1}{25}\right) $
$ \frac{\left(\lambda_2\right)_{ P }}{\left(\lambda_1\right)_{ P }}=\frac{\frac{7}{16 \times 9}}{\frac{16}{25 \times 9}}=\frac{25 \times 7}{16 \times 16} $
$ \left(\lambda_2\right)_{ P }=\frac{25 \times 7}{16 \times 16} \times 720$
$\left(\lambda_2\right)_{ P }=492 \,nm $

Answer: 917

Solution

$ Cr _2 O _7^{2-}+14 H ^{+}+6 e ^{-} \rightarrow 2 Cr ^{3+}+7 H _2 O$
$E =1.33-\frac{0.059}{6} \log \frac{(0.1)^2}{\left(10^{-2}\right)\left(10^{-3}\right)^{14}} $
$ E =1.33-\frac{0.059}{6} \times 42=0.917 $
$E =917 \times 10^{-3} $
$ x =917$

Answer: 2

Solution

$ \Delta G =\Delta H - T \Delta S$
$A : \Delta G \left( J mol ^{-1}\right)=-25 \times 10^3+80 \times 300:- ve $
$ B : \Delta G \left( J mol ^{-1}\right)=-22 \times 10^3-40 \times 300:- ve$
$ C : \Delta G \left( J mol ^{-1}\right)=25 \times 10^3+300 \times 50:+ ve$
$ D : \Delta G \left( J mol ^{-1}\right)=22 \times 10^3-20 \times 300:+ ve$
Processes $C$ and $D$ are non-spontaneous.

Answer: 2

Solution

Benzylic and tertiary carbocations are stable

Answer: 7

Solution

$ Co ^{2+}: 3 d ^7 4 s ^0, Cl ^{-}: WFL $
image
Configuration $e ^4 t _2{ }^3: m =4$
Number of unpaired electrons $=3$
So, answer $=7$

JEE Main Mathematics Question Paper with Solution 2023 January 24th Shift 1 - Morning

A

$2-e$

B

e

C

1

D

3

Solution

$ \frac{d y}{d x}=\frac{1-x y}{x^3}=\frac{1}{x^3}-\frac{y}{x^2} $
$ \frac{d y}{d x}+\frac{y}{x^2}=\frac{1}{x^3} $
$ \text { If }=e^{\int \frac{1}{x^2} d x}=e^{-\frac{1}{x}}$
$y \cdot e^{-\frac{1}{x}}=\int e^{-\frac{1}{x}} \cdot \frac{1}{x^3} d x\left(\text { put }-\frac{1}{x}=t\right) $
$y \cdot e^{-\frac{1}{x}}=-\int e^t \cdot t d t $
$ y=\frac{1}{x}+1+C e^{\frac{1}{x}}$
Where $C$ is constant
Put $x=\frac{1}{2}$
$ 3- e =2+1+ Ce ^2$
$ C =-\frac{1}{ e }$
$y (1)=1$

A

$ \frac{23}{3}$

B

$\frac{22}{3} $

C

$9$

D

$ \frac{25}{3} $

Solution

image
$ y^2+4 x=4 $
$y^2=-4(x-1) $
$ A=\int\limits_{-4}^2\left(\frac{4-y^2}{4}-\frac{y-2}{2}\right) d y=9$

A

both (S1) and (S2) are true

B

only ( S 1) is true

C

only (S2) is true

D

both (S1) and (S2) are false

Solution

$\Omega=$ sample space
$A =$ be an event
If $P(A)=0 \Rightarrow A=\phi$
If $P ( A )=1 \Rightarrow A =\Omega$
Then both statement are true

A

${ }^{45} C _{24}$

B

${ }^{45} C_{23}$

C

${ }^{44} C _{23}$

D

${ }^{44} C_{22}$

Solution

$\displaystyle \sum_{r=0}^{22}{ }^{22} C _{ r } \cdot{ }^{23} C _{ r }=\displaystyle\sum_{ r =0}^{22}{ }^{22} C _{ r } \cdot{ }^{23} C _{23- r }$
$ ={ }^{45} C _{23}$

A

6

B

3

C

9

D

12

Solution

$\Delta=0=\begin{vmatrix}\alpha^2 & \alpha & 1 \\ 1 & 1 & 1 \\ a & b & c\end{vmatrix}$
$\Rightarrow \alpha^2(c-b)-\alpha(c-a)+(b-a)=0$
It is singular when $\alpha=1$
$ \frac{(a-c)^2}{(b-a)(c-b)}+\frac{(b-a)^2}{(a-c)(c-b)}+\frac{(c-b)^2}{(a-c)(b-a)}$
$ \frac{(a-b)^3+(b-c)^3+(c-a)^3}{(a-b)(b-c)(c-a)} $
$ =3 \frac{(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)}=3$

A

$n ^2$

B

$n ^2+ n$

C

$n$

D

$\frac{n(n+1)}{2}$

Solution

$ \displaystyle\lim _{t \rightarrow 0}\left(1^{\text{cosec}^2 t}+2^{\text{cosec}^2 t}+\ldots \ldots . .+n^{\text{cosec}^2 t}\right)^{\sin ^2 t} $
$ =\displaystyle\lim _{t \rightarrow 0} n\left(\left(\frac{1}{n}\right)^{\text{cosec}^2 t}+\left(\frac{2}{n}\right)^{\text{cosecs}^2 t}+\ldots \ldots . .+1\right)^{\sin ^2 t} $
$ = n $

A

$20 \sqrt{2}$

B

31

C

$13 \sqrt{2}$

D

26

Solution

Equation of line
$\frac{x+1}{3}=\frac{y-9}{-4}=\frac{z+16}{12}$
G.P on line $(3 \lambda-1,-4 \lambda+9,12 \lambda-16)$
point of intersection of line \& plane
$6 \lambda-2-12 \lambda+27-12 \lambda+16=5$
$\lambda=2$
Point $(5,1,8)$
Distance $=\sqrt{36+64+576}=26$

A

18

B

19

C

20

D

21

Solution

$ x+y+z=1$
$ 2 x+N y+2 z=2$
$ 3 x+3 y+N z=3$
$\Delta=\begin{vmatrix}1 & 1 & 1 \\2 & N & 2 \\3 & 3 & N\end{vmatrix}$
$ =( N -2)( N -3)$
For unique solution $\Delta \neq 0$
So $N \neq 2,3$
$\Rightarrow P ($ system has unique solution $)=\frac{4}{6}$
So $k =4$
Therefore sum $=4+1+4+5+6=20$

A

$f$ is continuous but not differentiable

B

$f$ is continuous but $f^{\prime}$ is not continuous

C

$f^{\prime}$ is continuous but not differentiable

D

$f$ and $f^{\prime}$ both are continuous

Solution

Continuity of $ f(x): f\left(0^{+}\right)=h^2 \cdot \sin \frac{1}{h}=0$
$ f\left(0^{-}\right)=(-h)^2 \cdot \sin \left(\frac{-1}{h}\right)=0 $
$ f(0)=0 $
$ f(x) $ is continuous
$ f^{\prime}\left(0^{+}\right)=\displaystyle\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\frac{h^2 \cdot \sin \left(\frac{1}{h}\right)-0}{h}=0 $
$f^{\prime}\left(0^{-}\right)=\displaystyle\lim _{h \rightarrow 0} \frac{f(0-h)-f(0)}{-h}=\frac{h^2 \cdot \sin \left(\frac{1}{-h}\right)-0}{-h}=0$
$f(x)$ is differentiable.
$f^{\prime}(x)=2 x \cdot \sin \left(\frac{1}{x}\right)+x^2 \cdot \cos \left(\frac{1}{x}\right) \cdot \frac{-1}{x^2}$
$f^{\prime}(x)=\begin{cases}2 x \cdot \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}$
$\Rightarrow f^{\prime}(x)$ is not continuous (as $\cos \left(\frac{1}{x}\right)$ is highly oscillating at $x=0$ )

A

4

B

3

C

2

D

$\frac{5}{2}$

Solution

Let $P$ is $\overrightarrow{0}, Q$ is $\vec{q}$ and $R$ is $\vec{r}$
$A$ is $\frac{2 \overrightarrow{ q }+\overrightarrow{ r }}{3}, B$ is $\frac{2 \overrightarrow{ r }}{3}$ and $C$ is $\frac{\overrightarrow{ q }}{3}$
Area of $\triangle PQR$ is $=\frac{1}{2}|\overrightarrow{ q } \times \overrightarrow{ r }|$
Area of $\triangle ABC$ is $\frac{1}{2}|\overrightarrow{ AB } \times \overrightarrow{ AC }|$
$\overrightarrow{ AB }=\frac{\overrightarrow{ r }-2 \overrightarrow{ q }}{3}, \overrightarrow{ AC }=\frac{-\overrightarrow{ r }-\overrightarrow{ q }}{3}$
Area of $\triangle ABC =\frac{1}{6}|\overrightarrow{ q } \times r |$ $\frac{\text{Area}(\triangle PQR )}{\text{Area}(\triangle ABC )}=3$

A

6

B

2

C

12

D

$-6$

Solution

$ pq ^2=\log _{ x } \lambda $
$ qr =\log _{ y } \lambda $
$p ^2 r =\log _{ z } \lambda$
$ \log _{ y } x =\frac{ qr }{ pq ^2}=\frac{ r }{ pq } \ldots \ldots .(1) $
$ \log _{ x } z =\frac{ pq ^2}{ p ^2 r }=\frac{ q ^2}{ pr } \ldots \ldots \ldots(2) $
$ \log _{ z } y =\frac{ p ^2 r }{ qr }=\frac{ p ^2}{ q } \ldots \ldots \ldots(3)$
$3, \frac{3 r }{ pq }, \frac{3 p ^2}{ q }, \frac{7 q ^2}{ pr } \text { in A.P } $
$\frac{3 r }{ pq }-3=\frac{1}{2}$
$ r =\frac{7}{6} pq\ldots \ldots \ldots(4)$
$ r = pq +1 $
$ pq =6\ldots \ldots \ldots(5)$
$ r =7 \ldots\ldots \ldots \ldots(6)$
$\frac{3 p ^2}{ q }=4$
After solving $p=2$ and $q=3$

A

$\frac{\pi}{2}$

B

$\frac{\pi}{2}$.

C

$\frac{\pi}{6}$

D

$\frac{\pi}{3}$

Solution

$ \tan ^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right)+\sec ^{-1}\left(\sqrt{\frac{8+4 \sqrt{3}}{6+3 \sqrt{3}}}\right)$
$ =\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)+\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=\frac{\pi}{3}$

A

no solution

B

exactly two solutions in $(-\infty, \infty)$

C

a unique solution in $(-\infty, 1)$

D

a unique solution in $(-\infty, \infty)$

Solution

$ x ^2-4 x +[ x ]+3= x [ x ] $
$\Rightarrow x ^2-4 x +3= x [ x ]-[ x ] $
$ \Rightarrow( x -1)( x -3)=[ x ] .( x -1)$
$ \Rightarrow x =1 \text { or } x -3=[ x ]$
$ \Rightarrow x -[ x ]=3$
$ \Rightarrow\{ x \}=3 \text { (Not Possible) }$
Only one solution $x=1$ in $(-\infty, \infty)$

A

$x^2-4 x+1=0$

B

$x^2+4 x+1=0$

C

$x^2-4 x-1=0$

D

$x^2+4 x-1=0$

Solution

$ (1-\sqrt{3} i )^{200}=2^{199}( p + iq )$
$ 2^{200}\left(\cos \frac{\pi}{3}- i \sin \frac{\pi}{3}\right)^{200}=2^{199}( p + iq ) $
$ 2\left(-\frac{1}{2}- i \frac{\sqrt{3}}{2}\right)= p + iq$
$ p =-1, q =-\sqrt{3} $
$\alpha= p + q + q ^2=2-\sqrt{3}$
$ \beta= p - q + q ^2=2+\sqrt{3} $
$ \alpha+\beta=4 $
$ \alpha \cdot \beta=1 $
equation $x ^2-4 x +1=0$

A

$A ^2= I$ or $B = I$

B

$A ^2 B = BA ^2$

C

$AB = I$

D

$A ^2 B = I$

Solution

$ A ^2+ B = A ^2 B $
$ \left( A ^2- I \right)( B - I )= I $.......(1)
$ A ^2+ B = A ^2 B$
$A ^2( B - I )= B $
$A ^2= B ( B - I )^{-1} $
$ A ^2= B \left( A ^2- I \right) $
$ A ^2= BA A ^2- B $
$ A ^2+ B = BA ^2$
$ A ^2 B = BA ^2$

A

length of latus rectum $\frac{3}{2}$

B

length of latus rectum 2

C

directrix $4 x =3$

D

directrix $4 x=-3$

Solution

$ y ^2=24 x$
$ a =6$
$ xy =2 $
$ AB \equiv ty = x +6 t ^2$.......(1)
$ AB \equiv T = S _1 $
$ kx + hy =2 hk $.........(2)
From (1) and (2)
$\frac{ k }{1}=\frac{ h }{- t }=\frac{2 hk }{-6 t ^2}$
$\Rightarrow$ then locus is $y ^2=-3 x$
Therefore directrix is $4 x=3$

A

$5 \sqrt{2}$

B

$4 \sqrt{2}$

C

4

D

5

Solution

$=\begin{vmatrix} x-2 & y+3 & z-1 \\ -3 & 4 & -3 \\ 4 & -5 & 4 \end{vmatrix}=0$
$x-z-1=0$
Distance of $P (7,-3,-4)$ from Plane is
$d =\left|\frac{7+4-1}{\sqrt{2}}\right|=5 \sqrt{2}$

A

$((\sim P) \vee Q) \wedge((\sim Q) \vee P)$

B

$(\sim Q) \vee P$

C

$((-P) \vee Q) \wedge(-Q)$

D

$(-P) \vee Q$

Solution

Let $\quad r =(\sim( P \wedge Q )) \vee((\sim P ) \wedge Q ) ; \quad s =$ $((\sim P ) \wedge(\sim Q ))$
P Q $\sim(P \wedge Q)$ $(-P) \wedge Q$ r s $r \to s$
T T F F F F T
T F T F T F F
F T T T T F F
F F T F T T T

Option (A) : $((\sim P ) \vee Q ) \wedge((\sim Q ) \vee P )$
is equivalent to (not of only $P) \wedge($ not of only $Q$ )
$=($ Both $P , Q )$ and (neither P nor $Q )$

A

reflexive but not symmetric

B

transitive but not reflexive

C

symmetric but not transitive

D

neither symmetric nor transitive

Solution

Reflexive: $( a , a ) \Rightarrow \operatorname{gcd}$ of $( a , a )=1$
Which is not true for every a $\epsilon Z$.
Symmetric:
Take $a =2, b =1 \Rightarrow \operatorname{gcd}(2,1)=1$
Also $2 a =4 \neq b$
Now when $a =1, b =2 \Rightarrow \operatorname{gcd}(1,2)=1$
Also now $2 a =2= b$
Hence $a=2 b$
$\Rightarrow R$ is not Symmetric
Transitive:
Let $a =14, b =19, c =21$
$\text{gcd}(a, b)=1$
$\text{gcd}(b, c)=1$
$\text{gcd}(a, c)=7$
Hence not transitive
$\Rightarrow R$ is neither symmetric nor transitive.

A

1

B

2

C

$\frac{3}{2}$

D

$-\frac{2}{3}$

Solution

$\overrightarrow{ u }=(1,-1,-2), \overrightarrow{ v }=(2,1,-1), \overrightarrow{ v } \cdot \overrightarrow{ w }=2$
$ \overrightarrow{ v } \times \overrightarrow{ w }=\overrightarrow{ u }+\lambda \overrightarrow{ v } \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1) $
Taking dot with $ \overrightarrow{ w } \text { in }(1) $
$ \overrightarrow{ w } \cdot(\overrightarrow{ v } \times \overrightarrow{ w })=\overrightarrow{ u } \cdot \overrightarrow{ w }+\lambda \overrightarrow{ v } \cdot \overrightarrow{ w }$
$ \Rightarrow 0=\overrightarrow{ u } \cdot \overrightarrow{ w }+2 \lambda$
Taking dot with $\vec{v}$ in (1)
$ \overrightarrow{ v } \cdot(\overrightarrow{ v } \times \overrightarrow{ w })=\overrightarrow{ u } \cdot \overrightarrow{ v }+\lambda \overrightarrow{ v } \cdot \overrightarrow{ v }$
$ \Rightarrow 0=(2-1+2)+\lambda \cdot(6)$
$ \lambda=-\frac{1}{2} $
$ \Rightarrow \overrightarrow{ u } \cdot \overrightarrow{ w }=-2 \lambda=1$

Answer: 5

Solution

$ | x |^2-2| x |+|\lambda-3|=0$
$ | x |^2-2| x |+|\lambda-3|-1=0$
$ (| x |-1)^2+|\lambda-3|=1$
At $\lambda=3, x =0$ and 2 ,
at $\lambda=4$ or 2 ,
then $x =1$ or $-1$
So maximum value of $x+\lambda=5$

Answer: 2

Solution

$I=\frac{8}{\pi} \int\limits_0^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023}+(\cos x)^{2023}} d x$......(1)
Using $\int\limits_0^a f(x) d x=\int\limits_0^a f(a-x) d x$
$I=\frac{8}{\pi} \int\limits_0^{\frac{\pi}{2}} \frac{(\sin x)^{2023}}{(\sin x)^{2023}+(\cos x)^{2023}} d x$........(2)
Adding (1) & (2)
$ 2 I =\frac{8}{\pi} \int\limits_0^{\frac{\pi}{2}} 1 dx$
$ I =2$

Answer: 14

Solution

Shortest distance between the lines
$=\frac{\begin{vmatrix}4 & 2 & -14 \\ 3 & 2 & 2 \\ 3 & -2 & 0\end{vmatrix}}{\begin{vmatrix}\hat{i} & \hat{ j } & \hat{ k } \\ 3 & 2 & 2 \\ 3 & -2 & 0\end{vmatrix}}$
$=\frac{16+12+168}{|-4 \hat{i}+6 \hat{j}-12 \hat{k}|}=\frac{196}{14}=14$

Answer: 12

Solution

$T _4=500 $ where $a =$ first term,
$r =\text { common ratio }=\frac{1}{ m }, m \in N$
$ a r^3=500 $
$ \frac{a}{m^3}=500 $
$ S_n-S_{n-1}=a r^{n-1}$
$ S_6>S_5+1$
and $S _7- S _6< \frac{1}{2}$
$S _6- S _5>1 \,\,\,\,\,\frac{ a }{ m ^6}<\frac{1}{2}$
$ar ^5>1 \,\,\,\, m ^3>10^3$
$\frac{500}{ m ^2}>1 \,\,\,\,\, m >10$...(2)
$m ^2< 500$.........(1)
From (1) and (2)
$m =11,12,13 \ldots \ldots \ldots \ldots ., 22$
So number of possible values of $m$ is $12$

Answer: 118

Solution

image
Equation of normal of ellipse $\frac{x^2}{36}+\frac{y^2}{16}=1$ at any point $P (6 \cos \theta, 4 \sin \theta)$ is
$3 \sec \theta x-2 \operatorname{cosec} \theta y=10$ this normal is also the normal of the circle passing through the point $(2,0)$ So,
$6 \sec \theta=10$ or $\sin \theta=0$ (Not possible) $\cos \theta=\frac{3}{5}$ and $\sin \theta=\frac{4}{5}$ so point $P =\left(\frac{18}{5}, \frac{16}{5}\right)$
So the largest radius of circle
$r=\frac{\sqrt{320}}{5}$
So the equation of circle $(x-2)^2+y^2=\frac{64}{5}$
Passing it through $(1, \alpha)$
Then $\alpha^2=\frac{59}{5}$
$10 \alpha^2=118$

Answer: 7

Solution

Equation of tangent at point $P (4 \cos \theta, 3 \sin \theta)$ is $\frac{ x \cos \theta}{4}+\frac{ y \sin \theta}{3}=1$
So $A$ is $(4 \sec \theta, 0)$ and point $B$ is $(0,3 \operatorname{cosec} \theta)$
Length $A B =\sqrt{16 \sec ^2 \theta+9 \operatorname{cosec}^2 \theta}$ $=\sqrt{25+16 \tan ^2 \theta+9 \cot ^2 \theta} \geq 7$

Answer: 1012

Solution

using result
$\displaystyle\sum_{ r =0}^{ n } r ^2\,\,{ }^{ n } C _{ r }= n ( n +1) \cdot 2^{ n -2}$
Then $\displaystyle\sum_{ r =0}^{2023} r ^2\,\,{ }^{2023} C _{ r }=2023 \times 2024 \times 2^{2021}$
$ =2023 \times \alpha \times 2^{2022} \text { So, } $
$ \Rightarrow \alpha=1012$

Answer: 22

Solution

$ 12 \int\limits_0^3\left| x ^2-3 x +2\right| dx $
$ =12 \int\limits_0^3\left|\left( x -\frac{3}{2}\right)^2-\frac{1}{4}\right| dx$
$ \text { If } x -\frac{3}{2}= t $
$ dx - dt$
$=24 \int\limits_0^{3 / 2}\left| t ^2-\frac{1}{4}\right| dt $
$ =24\left[-\int\limits_0^{1 / 2}\left( t ^2-\frac{1}{4}\right) dt +\int\limits_{1 / 2}^{3 / 2}\left( t ^2-\frac{1}{4}\right) dt \right]=22$

Answer: 60

Solution

Even digits occupy at even places
$ \frac{4 !}{2 ! 2 !} \times \frac{5 !}{2 ! 3 !}=\frac{24 \times 120}{4 \times 12}=60$