JEE Main Question Paper with Solution 2023 January 25th Shift 2 - Evening

JEE Main Physics Question Paper with Solution 2023 January 25th Shift 2 - Evening

A

20V

B

16V

C

8V

D

12V

Solution

image
Induced emf across the ends =Bv
=2×8×1=16V

A

8ms1

B

20ms1

C

25ms1

D

40ms1

Solution

x=4t2
v=dxdt=8t
At t=5sec
v=8×5=40m/s

A

32R

B

72R

C

92R

D

52R

Solution

Diatomic gas molecules have three translational degree of freedom, two rotational degree of freedom & it is given that it has one vibrational mode so there are two additional degree of freedom corresponding to one vibrational mode, so total degree of freedom =7
Cv=fR2=7R2

A

1.5S

B

3s

C

4s

D

2s

Solution

image
Let time from 0 to A/2 is t1
& from A/2 to A is t2
then ωt1=π/6
ωt2=π/3
t1t2=12
t2=2t1=2×2=4sec

A

125

B

5

C

25

D

625

Solution

image
Volume of wire is constant in stretching
V _{ i }= V _{ f }
A _{ i } \ell_{ i }= A _{ f } \ell_{ f }
A \ell= A ^{\prime}(5 \ell)
A ^{\prime}=\frac{ A }{5}
R _{ f }=\frac{\rho \ell_{ f }}{ A _{ f }}=\frac{\rho(5 \ell)}{\left(\frac{ A }{5}\right)}
=25\left(\frac{\rho \ell}{ A }\right)
=25 \times 5=125 \Omega

A

2.0

B

1.0

C

1.5

D

0.5

Solution

\tau= K \theta
NiAB = K \theta
A =\frac{ K \theta}{ NiB }=\frac{4 \times 10^{-5} \times 0.05}{200 \times 10 \times 10^{-3} \times 0.01}
On solving A =10^{-4} m ^2=1 cm ^2

A

Statenent I is correct but statement II is incorrect

B

Both Statement I and Statement II are incorrect

C

Statenent I is incorrect but statement II is correct

D

Both Statenent I and statement II are correct

Solution

Statement - I is correct
When P-N junction is formed an electric field is generated form N-side to P-side due to which barrier potential arises & majority charge carrier can not flow through the junction due to barrier potential so current is zero unless we apply forward bias voltage.

A

1:2

B

4: 1

C

2: 1

D

1:1

Solution

\text { Range }=\frac{ u ^2 \sin 2 \theta}{ g }
Range for projection angle " \alpha "
R _1=\frac{ u ^2 \sin 2 \alpha}{ g }
Range for projection angle " \beta "
R _2=\frac{ u ^2 \sin 2 \beta}{ g }
\alpha+\beta=90^{\circ} \text { (Given) }
\Rightarrow \beta=90^{\circ}-\alpha
R _2=\frac{ u ^2 \sin 2\left(90^{\circ}-\alpha\right)}{ g }
R _2=\frac{ u ^2 \sin \left(180^{\circ}-2 \alpha\right)}{ g }
R _2=\frac{ u ^2 \sin 2 \alpha}{ g }
\Rightarrow \frac{ R _1}{ R _2}=\frac{\left(\frac{ u ^2 \sin 2 \alpha}{ g }\right)}{\left(\frac{ u ^2 \sin 2 \alpha}{ g }\right)}=\frac{1}{1}

A

\frac{t_P}{100}=\frac{t_Q-180}{150}

B

\frac{t_Q}{150}=\frac{t_P-180}{100}

C

\frac{t_p}{180}-\frac{t_Q-40}{100}

D

\frac{t_Q}{100}=\frac{t_P-30}{150}

Solution

\frac{\text { reading on scale }-\text { Lower fixed point }}{\text { upper fixed po int-lower fixed point }}=\text { constant }
\frac{t_p-30}{180-30}=\frac{t_Q-0}{100-0}
\frac{t_p-30}{150}=\frac{t_Q}{100}

A

A and D only

B

B and C only

C

A and C Only

D

C and Donly

Solution

F =\frac{ Gm _1 m _2}{ r ^2}
\Rightarrow F \propto \frac{1}{ r ^2}
\Rightarrow F \propto m _1 m _2
\Rightarrow This force provides centripetal force and acts towards sun
\Rightarrow T ^2 \propto a ^3 \text { (Kepler's third law) }

A

Both Statement I and Statement II are incorrect

B

Statement I is correct but statement II is incorrect

C

Both Statement I and statement II are correct

D

Statement I is incorrect but statement II is correct

Solution

Stopping potential V _{ S }=\frac{ KE _{\max }}{ e }
V _{ S }=\frac{\frac{ hC }{\lambda}-\phi}{ e }
Stopping potential does not depend on intensity or power of light used, it only depends on frequency or wavelength of incident light.
So both statements I and II are correct

A

0.50

B

0.33

C

0.25

D

0.60

Solution

image
F _1= mg \sin 45^{\circ}+ f = mg \sin 45^{\circ}+\mu N
F _1=\frac{ mg }{\sqrt{2}}+\mu mg \cos 45^{\circ}
F _1=\frac{ mg }{\sqrt{2}}(1+\mu)
image
F _2= mg \sin 45^{\circ}- f = mg \sin 45^{\circ}-\mu N
=\frac{ mg }{\sqrt{2}}(1-\mu)
F _1=2 F _2
\frac{ mg }{\sqrt{2}}(1+\mu)=2 \frac{ mg }{\sqrt{2}}(1-\mu)
1+\mu=2-2 \mu
\mu=1 / 3=0.33

A

\frac{1}{2} m g R_e

B

3 m g R_e

C

\frac{2}{3} m g R_e

D

\frac{1}{3} m g R_e

Solution

U =\frac{- GM _{ e } m }{ r }
U _{ i }=\frac{- GM _{ e } m }{ R _{ e }}
U _{ f }=\frac{- GM _{ e } m }{\left( R _{ e }+ h \right)}=\frac{- GM _{ e } m }{ R _{ e }+2 R _{ e }}
\frac{- GM _{ e } m }{3 R _{ e }}
Increase in internal energy \Delta U = U _{ f }- U _{ i }
=\frac{2}{3} \frac{ GM _{ e } m }{ R _{ e }}
\frac{2}{3} \frac{ GM _{ e }}{ R _{ e }^2} mR _{ e }
=\frac{2}{3} mgR _{ e }

A

x=-4 \,cm

B

x=4 \, cm

C

x=8 \,cm

D

x=6 \,cm

Solution

image
E_P=\frac{K \times 10}{2^2}-\frac{K \times 40}{\left(x_0-2\right)^2}=0
\frac{1}{2}=\frac{2}{x_0-2}
x_0-2=4
x_0=6\, cm

A

A-I, B-III, C-IV, D-II

B

A-I, B-II, C-III, D-IV

C

A-II, B-III, C-IV, D-I

D

A-III, B-I, C-II, D-IV

Solution

Y =\frac{\text { Stress }}{\text { Strain }}=\frac{ F / A }{\Delta \ell / \ell}=\frac{\left[ MLT ^{-2}\right]}{\left[ L ^2\right]}=\left[ ML ^{-1} T ^{-2}\right]
F =6 \pi \eta rv \Rightarrow \eta=\frac{ F }{6 \pi rv }
{[\eta]=\frac{\left[ MLT ^{-2}\right]}{[ L ]\left[ LT ^{-1}\right]}=\left[ ML ^{-1} T ^{-1}\right]}
E = hv \Rightarrow h =\frac{ E }{v}=\frac{\left[ ML ^2 T ^{-2}\right]}{\left[ T ^{-1}\right]}=\left[ ML ^2 T ^{-1}\right]
Work function has same dimension as that of energy, so [\phi]=\left[ ML ^2 T ^{-2}\right]

A

A-I, B-II, C-IV, D-III

B

A-II, B-I, C-IV, D-III

C

A-I, B-II, C-III, D-IV

D

A-II, B-I, C-III, D-IV

Solution

\Delta U = nC _{ v } \Delta T
For isothermal process T is constant
So \Delta U =0
A \longrightarrow II
Adiabatic process
\Delta Q = 0
\Delta Q =\Delta U +\Delta W
\Delta U =-\Delta W
Work done by gas is positive
So \Delta U is negative
\text { B } \longrightarrow \text { I }
For Isochoric process \Delta W =0
C \longrightarrow IV
For Isobaric process
\Delta W = P \Delta V \neq 0
\Delta U = nC _{ V } \Delta T \neq 0
Heat absorbed goes partly to increase internal energy and partly do work.

A

A-I, B-II, C-III, D-IV

B

A-IV, B-I, C-II, D-III

C

A-III, B-IV, C-I, D-II

D

A-II, B-III, C-IV, D-I

Solution

Gauss's Law of electrostatic
\phi=\oint \vec{ E } \cdot d \vec{ s }=\frac{ q }{\epsilon_0}
Faraday's law \oint \vec{E} \cdot \vec{d l}=\frac{-d \phi_B}{d t}
Gauss's law of magnetism \oint \vec{ B } \cdot d \vec{ A }=0
Ampere's Maxwell law
\oint \vec{B} . d \vec{l}=\mu_0 i_C+\mu_0 \in_0 \frac{d \phi_E}{d t}
Where i _{ C } : Conduction current
\epsilon_0 \frac{ d \phi_{ E }}{ dt } : Displacement current

A

D

B

B

C

A

D

C

Solution

\lambda=\frac{ hc }{\Delta E }
\Delta E _{ A }=2.2\, eV
\Delta E _{ B }=5.2\, eV
\Delta E _{ C }=3\, eV
\Delta E _{ D }=10 \, eV
\lambda_{ A }=\frac{6.62 \times 10^{-34} \times 3 \times 10^8}{2.2 \times 1.6 \times 10^{-19}}
=\frac{12.41 \times 10^{-7}}{2.2} m
=\frac{1241}{2.2} nm =564\, nm
\lambda_{ B }=\frac{1241}{5.2} nm =238.65\, nm
\lambda_{ C }=\frac{1241}{3} nm =413.66 \, nm
\lambda_{ D }=\frac{1241}{10}=124.1 \, nm

Answer: 1

Solution

image
E _{ eq }=\frac{\frac{12}{3}-\frac{6}{6}}{\frac{1}{3}+\frac{1}{6}}
E _{ eq }=6 V
r _{ eq }=2 \Omega
R =4 \Omega
image

Answer: 30

Solution

image
f =10\, cm
\frac{1}{ v }-\frac{1}{ u }=\frac{1}{ f }
\frac{1}{15}-\frac{1}{- u }=\frac{1}{10}
\Rightarrow \frac{1}{ u }=\frac{1}{10}-\frac{1}{15}
On solving we get value of u as 30 \,cm.

Answer: 400

Solution

image
f_{\text {app }}=f\left(\frac{v}{v-v_s}\right)
=320\left(\frac{330}{330-66}\right)
=400 Hz

Answer: 6

Solution

image
=\frac{\in_0 A }{\left(\frac{ d }{3}+\frac{ d }{2}\right)}=\frac{6 \in_0 A }{5 d }
=\frac{6}{5} \times 5 \mu F =6 \mu F

Answer: 68

Solution

image
Magnetic fields due to both wires will be perpendicular to each other.
B_1=\frac{\mu_0 i_1}{2 \pi d } B_2=\frac{\mu_0 i _2}{2 \pi d }
B _{ net }=\sqrt{ B _1^2+ B _2^2} \Rightarrow \frac{\mu_0}{2 \pi d } \sqrt{ i _1^2+ i _2^2}
\Rightarrow \frac{4 \pi \times 10^{-7}}{2 \pi \times(7 / \sqrt{2}) \times 10^{-2}} \times \sqrt{8^2+15^2}\left( d =\frac{7}{\sqrt{2}} cm \right)
\Rightarrow 68 \times 10^{-6} T

Answer: 5

Solution

image
I _1=\frac{2}{5} m _1 R ^2+ m _1 R ^2
I _1= m _1 R ^2\left(\frac{7}{5}\right)
I _1=7 R ^2
image
I _2=\frac{ m _2 R ^2}{4}+ m _2 R ^2
I _2=\frac{5}{4} m _2 R ^2
I _2=5 R ^2
\frac{ I _2}{ I _1}=\frac{5}{7}
x =5

Answer: 1

Solution

Surface Tension = T
R : Radius of bigger drop
r : Radius of smaller drop
Volume will remain same
\frac{4}{3} \pi R ^3=1000 \times \frac{4}{3} \pi r ^3
R =10 r
u _{ i }= T \cdot 4 \pi R ^2
u _{ f }= T \cdot 4 \pi r ^2 \times 1000
\frac{ u _{ f }}{ u _{ i }}=\frac{1000 r ^2}{ R ^2}
\frac{ u _{ f }}{ u _{ i }}=\frac{10}{1}
\text { So, } x =1

Answer: 2

Solution

image
m _1 v _1= m _2 v _2 \Rightarrow \frac{ m _1}{ m _2}=\frac{2}{3}
Since, Nuclear mass density is constant
\frac{ m _1}{\frac{4}{3} \pi r _1^3}=\frac{ m _2}{\frac{4}{3} \pi r _2^3}
\left(\frac{ r _1}{ r _2}\right)^3=\frac{ m _1}{ m _2}
\frac{ r _1}{ r _2}=\left(\frac{2}{3}\right)^{\frac{1}{3}}
\text { So, } x=2

Answer: 8

Solution

\cos \phi=\frac{R}{Z}=\frac{ R }{\sqrt{ R ^2+\left( X _{ C }- X _{ L }\right)^2}}
\cos \phi=\frac{80}{\sqrt{(80)^2+(60)^2}}
\cos \phi=\frac{80}{100} \Rightarrow \frac{8}{10}
So, x=8

JEE Main Chemistry Question Paper with Solution 2023 January 25th Shift 2 - Evening

A

Both Statement I and Statement II are false

B

Both Statement I and Statement II are true

C

Statement I is false but Statement II is true

D

Statement I is true but Statement II is false

Solution

In froth floatation method a rotating paddle draws in air and stirs the pulp

A

B and C only

B

A and C only

C

A and D only

D

A, B and C only

Solution

B. \overset{\bullet}{Cl} + O_3 \rightarrow O_2 + Cl\overset{\bullet}{O}
D. 'Blue baby' syndrome occurs due to the presence of excess of nitrate ions in water.

A

A is not correct but R is correct

B

Both A and R are correct but R is NOT the correct explanation of A

C

Both A and R are correct and R is the correct explanation of A

D

A is correct but R is not correct

Solution

The alkali metals and their salts impart characteristic colour to oxidizing flame.

A

A-IV, B-III, C-I, D-II

B

A-II, B-III, C-IV, D-I

C

A-IV, B-I, C-II, D-III

D

A-IV, B-III, C-II, D-I

Solution

Cobalt catalyst \rightarrow Methanol production
Syn gas \rightarrow Coal gasification
\left( C _{(\text {Red hot coke })}+ H _2 O ( g ) \rightarrow CO + H _2\right)
Nickel catalyst \rightarrow Water gas production
Brine solution \rightarrow Production
( aq. NaCl ) \begin{pmatrix} H _2 \rightarrow \text { Cathode } \\ Cl _2 \rightarrow \text { anode }\end{pmatrix}

A

A-III, B-II, C-I, D-IV

B

A-II, B-III, C-IV, D-I

C

A-IV, B-I, C-III, D-II

D

A-III, B-I, C-II, D-IV

Solution

LIST I Coordination entity LIST II Wavelength of light absorbed in nm
A \left[ CoCl \left( NH _3\right)_5\right]^{2+} I 535
B \left[ Co \left( NH _3\right)_6\right]^{3+} II 475
C \left[ Co ( CN )_6\right]^{3-} III 310
D \left[ Cu \left( H _2 O \right)_4\right]^{2+} IV 600
E =\frac{ hc }{\lambda} \Rightarrow E \propto \frac{1}{\lambda}
\Rightarrow \Delta( CFSE ) \propto \frac{1}{\lambda_{\text {absorb }}} \propto \text { strength of ligand. }

A

1: 2

B

1: 1

C

3:1

D

2:1

Solution

Assume : Mass of solvent \approx Mass of solution
Case I :-
0.25=\frac{W_1}{62} \times \frac{1000}{500}
Case II :-
0.25=\frac{ W _2}{62} \times \frac{1000}{250}
\frac{ W _1}{ W _2}=\frac{2}{1}

A

Rb

B

Na

C

Li

D

K

Solution

Sodium have lowest oxidation potential in alkali metals. Hence it is weakest reducing agent among alkali metals.

A

2 - Bromo - 1 - deuterobutane

B

2 - Bromo - 2 - deuterobutane

C

2 - Bromo - 3 - deuterobutane

D

2 - Bromo-1 - deutero - 2 - methylpropane

A

decreases by 3 units

B

decreases by 2 units

C

increases by 2 units

D

increases by 1000 units

Solution

\Delta\left[ H ^{+}\right]=1000
\Delta pH =-\log \Delta\left[ H ^{+}\right]=-\log 10^3
=-3

A

Both Statement I and Statement II are correct

B

Statement I is correct but Statement II is incorrect

C

Statement I is incorrect but Statement II is correct

D

Both Statement I and Statement II are incorrect

Solution

Statement II : The corssed arrow symbolises the direction of the shift of electron density in the molecule.

A

H \left[ AgCl _3\right] \&\left( NH _4\right)\left[ Ag ( OH )_2\right]

B

H \left[ AgCl _3\right] \&\left[ Ag \left( NH _3\right)_2\right] Cl

C

AgCl \&\left[ Ag \left( NH _3\right)_2\right] Cl

D

AgCl \&\left( NH _4\right)\left[ Ag ( OH )_2\right]

A

Be < Si < Mg < K

B

K < Mg < Be < Si

C

Be < Si < K < Mg

D

Si < Be < Mg < K

Solution

Metallic character increases down the group and decreases along the period.

A

A is correct but R is not correct

B

Both A and R are correct but R is NOT the correct explanation of A

C

A is not correct but R is correct

D

Both A and R are correct and R is the correct explanation of A

Solution

Butylated hydroxyl anisole is an antioxidant.

Answer: 12

Solution

Element Percentage Mole Mole ratio
C 85.8 \frac{85.8}{12}=7.15 1
H 14.2 \frac{14.2}{1}=14.2 2
Empirical formula \left( CH _2\right)
14 \times n =84
n =6
\therefore Molecular formula C _6 H _{12}

Answer: 3

Solution

Overall reaction :-
H _{2( g )}+ M _{\text {(aq) }}^{3+} > M _{\text {(aq) }}^{+}+2 H _{\text {(aq) }}^{+}
E _{\text {Cell }}= E _{\text {Cathode }}^{ o }- E _{\text {anode }}^{\circ}-\frac{0.059}{2} \log \frac{\left[ M ^{+}\right] \times 1^2}{\left[ M ^{+3}\right] 1}
0.1115=0.2-\frac{0.059}{2} \log \frac{\left[ M ^{+}\right]}{\left[ M ^{+3}\right]}
3=\log \frac{\left[ M ^{+}\right]}{\left[ M ^{+3}\right]}
\therefore a =3

Answer: 925

Solution

image
\Rightarrow 28=16.8+ x
x =11.2 L
n _{ CH _4}=\frac{ PV }{ RT }=\frac{1 \times 5.6}{0.082 \times 298}=0.229 \text { mole }
n _{ C _2 H _2}= \frac{11.2}{0.082 \times 298}=0.458 \text { mole }
\therefore \text { Heat evolved }=0.229 \times 900+0.458 \times 1400
=206.1+641.2
= 847.3 \,kJ

Answer: 5

Solution

p _{ x }, p _{ y }, p _{ z }, d _{ z ^2} \& d _{ x ^2- y ^2} are axial orbitals.

Answer: 2

Solution

t _{10 \%}=\frac{1}{ K } \ln \left(\frac{ a }{ a - x }\right)=\frac{1}{ K } \ln \left(\frac{100}{90}\right)
t _{10 \%}=\frac{2.303}{ K }(\log 10-\log 9)
t _{10 \%}=\frac{2.093}{ K } \times(0.04)
Similarly
t _{90 \%}=\frac{1}{ K } \ln \left(\frac{100}{10}\right)
t _{90 \%}=\frac{2.303}{ K }
\frac{ t _{90 \%}}{ t _{10 \%}}=\frac{1}{0.04}=25
e ^{ kt }=\frac{ a }{ a - x }
\frac{ a - x }{ a }= e ^{- kt }
1-\frac{ x }{ a }= e ^{- kt }
x = a \left(1- e ^{- kt }\right)
\alpha=\frac{ x }{ a }=\left(1- e ^{- kt }\right)

Answer: 5

Solution

\left[ Co \left( NH _3\right)_4 Cl _2\right] Cl \Rightarrow Gives 1 mole AgCl
\left[ Ni \left( H _2 O \right)_6\right] Cl _2 \Rightarrow Gives 2 moles AgCl
\left[ Pt \left( NH _3\right)_2 Cl _2\right] \Rightarrow Gives No AgCl
\left[ Pd \left( NH _3\right)_4\right] Cl _2 \Rightarrow Gives 2 moles AgCl
Total number of moles of AgCl =5 mole.

JEE Main Mathematics Question Paper with Solution 2023 January 25th Shift 2 - Evening

A

\frac{11}{6}-\log _e 4

B

\frac{11}{12}+\log _{ e } 4

C

\frac{11}{6}+\log _{ e } 4

D

\frac{11}{12}-\log _e 4

Solution

I=16 \int\limits_1^2 \frac{d x}{x^3\left(x^2+2\right)^2}
=16 \int\limits_1^2 \frac{d x}{x^3 x^4\left(1+\frac{2}{x^2}\right)^2}
Let, 1+\frac{2}{x^2}=t \Rightarrow \frac{-4}{x^3} d x=d t
I=-4 \int\limits_3^{\frac{3}{2}} \frac{d t}{\left(\frac{2}{t-1}\right)^2 t^2}
I=-4 \int\limits_3^{\frac{3}{2}}\left(\frac{t-1}{2}\right)^2 \frac{d t}{t^2}
I=-\frac{4}{4} \int\limits_3^{\frac{3}{2}}\left(1-\frac{2}{t}+\frac{1}{t^2}\right) d t
I=-1\left[t-2 \ell n |t|-\frac{1}{t}\right]_3^{\frac{3}{2}}
I=-1\left[\left(\frac{3}{2}-2 \ell n \frac{3}{2}-\frac{2}{3}\right)-\left(3-2 \ell n 3-\frac{1}{3}\right)\right]
I=-1\left[2 \ell n 2-\frac{11}{6}\right]
I=\frac{11}{6}-\ell n 4

A

{ }^{51} C _3-{ }^{45} C _3

B

{ }^{52} C _4-{ }^{45} C _4

C

{ }^{52} C _3-{ }^{45} C _3

D

{ }^{51} C _4-{ }^{45} C _4

Solution

\displaystyle\sum_{ k =0}^6{ }^{51- k } C _3
={ }^{51} C _3+{ }^{50} C _3+{ }^{49} C _3+\ldots+{ }^{45} C _3
={ }^{45} C _3+{ }^{46} C _3+\ldots . .+{ }^{51} C _3
={ }^{45} C _4+{ }^{45} C _3+{ }^{46} C _3+\ldots . .+{ }^{51} C _3-{ }^{45} C _4
\left({ }^n C_r+{ }^n C_{r-1}={ }^{n+1} C_r\right)
={ }^{52} C _4-{ }^{45} C _4

A

Only S 1 is true

B

Both S1 and S2 are false

C

Both S1 and S2 are true

D

Only S2 is true

Solution

Given, A ^{ T }= A , B ^{ T }=- B , C ^{ T }=- C
Let M=A^{13} B^{26}-B^{26} A^{13}
Then, M^{ T }=\left( A ^{13} B ^{26}- B ^{26} A ^{13}\right)^{ T }
=\left( A ^{13} B ^{26}\right)^{ T }-\left( B ^{26} A ^{13}\right)^{ T }
=\left( B ^{ T }\right)^{26}\left( A ^{ T }\right)^{13}-\left( A ^{ T }\right)^{13}\left( B ^{ T }\right)^{26}
= B ^{26} A ^{13}- A ^{13} B ^{26}=- M
Hence, M is skew symmetric
Let, N = A ^{26} C ^{13}- C ^{13} A ^{26}
then, N ^{ T }=\left( A ^{26} C ^{13}\right)^{ T }-\left( C ^{13} A ^{26}\right)^{ T }
=-( C )^{13}( A )^{26}+ A ^{26} C ^{13}= N
Hence, N is symmetric.
\therefore Only S2 is true.

A

2

B

1

C

4

D

3

Solution

f:\{1,2,3,4\} \rightarrow\{ a \in Z :| a | \leq 8\}
f( n )+\frac{1}{ n } f ( n +1)=1, \forall n \in\{1,2,3\}
f( n +1) must be divisible by n
f(4) \Rightarrow-6,-3,0,3,6
f(3) \Rightarrow-8,-6,-4,-2,0,2,4,6,8
f(2) \Rightarrow-8, \ldots \ldots \cdots \cdots \cdots, 8
f(1) \Rightarrow-8, \ldots \ldots \ldots \ldots \ldots .8
\frac{f(4)}{3} must be odd since f(3) should be even therefore 2 solution possible.
image

A

\frac{107}{17}

B

\frac{73}{17}

C

-\frac{73}{17}

D

-\frac{107}{17}

Solution

Let A :(3,-4,2) C :(-2,-1,3)
\text { B : }(1,2,-1) \text { D : }(5,-2 \alpha, 4)
A, B, C, D are coplanar points, then
\Rightarrow\begin{vmatrix} 1-3 & 2+4 & -1-2 \\-2-3 & -1+4 & 3-2 \\5-3 & -2 \alpha+4 & 4-2\end{vmatrix}=0
\Rightarrow \alpha=\frac{73}{17}

A

59

B

60

C

61

D

58

Solution

f( x )=2 x ^{ n }+\lambda
f(4)=133
f(5)=255
133=2 \times 4^{ n }+\lambda ...(1)
255=2 \times 5^{ n }+\lambda....(2)
(2)-(1)
122=2\left(5^{ n }-4^{ n }\right)
\Rightarrow 5^{ n }-4^{ n }=61
\therefore n =3 \& \lambda=5
Now, f(3)-f(2)=2\left(3^3-2^3\right)=38
Number of Divisors is 1, 2, 19, 38 ; & their sum is 60

A

\Delta=\wedge, \nabla=\wedge

B

\Delta=\vee, \nabla=\vee

C

\Delta=\vee, \nabla=\wedge

D

\Delta=\wedge, \nabla=\vee

Solution

Given ( p \rightarrow q ) \Delta( p \nabla q )
Option I \Delta=\wedge, \nabla=\vee
image
image
image
Hence, it is tautology.
Option 4 \Delta=\wedge, \nabla=\wedge
image

A

4 y^2-18 y+3 x+18=0

B

4 y^2-18 y-3 x+18=0

C

4 y^2+18 y+3 x+18=0

D

4 y^2-18 y-3 x-18=0

Solution

y^2=6 x \& y^2=4 a x
\Rightarrow 4 a=6 \Rightarrow a=\frac{3}{2}
image
y = mx +\frac{3}{2 m } ;( m \neq 0)
h =\frac{6 m -3}{4 m ^2}, k =\frac{6 m +3}{4 m }, Now eliminating m and we get
\Rightarrow 3 h =2\left(-2 k ^2+9 k -9\right)
\Rightarrow 4 y ^2-18 y +3 x +18=0

A

4 \sqrt{6}+\frac{44}{3}

B

4 \sqrt{6}-\frac{28}{3}

C

4 \sqrt{6}+\frac{28}{3}

D

4 \sqrt{6}-\frac{44}{3}

Solution

16\left(x^2+4 x\right)-\left(y^2-4 y\right)+44=0

16(x+2)^2-64-(y-2)^2+4+44=0

16(x+2)^2-(y-2)^2=16

\frac{(x+2)^2}{1}-\frac{(y-2)^2}{16}=1
image
A=\int\limits_{-2}^{\sqrt{6}}\left(2-\left(x^2-4\right)\right) d x
A=\int\limits_{-2}^{\sqrt{6}}\left(6-x^2\right) d x=\left(6 x-\frac{x^3}{3}\right)_{-2}^{\sqrt{6}}
A=\left(6 \sqrt{6}-\frac{6 \sqrt{6}}{3}\right)-\left(-12+\frac{8}{3}\right)
A=\frac{12 \sqrt{6}}{3}+\frac{28}{3}
A=4 \sqrt{6}+\frac{28}{3}

A

72

B

120

C

6

D

12

Solution

Numbers between 5000 \& 10000
Using digits 1,3,5,7,9
image

A

\frac{3}{2}

B

3

C

2

D

\frac{5}{2}

Solution

\frac{x+1}{1}=\frac{y}{\frac{1}{2}}=\frac{z}{\frac{-1}{12}} \text { and } \frac{x}{1}=\frac{y+2}{1}=\frac{z-1}{\frac{1}{6}}
\Rightarrow \text { Shortest distance }=\frac{(\vec{ b }-\vec{ a }) \cdot(\vec{ p } \times \vec{ q })}{|\vec{ p } \times \vec{ q }|}
\text { S.D. }=(-\hat{ i }+2 \hat{ j }-\hat{ k }) \cdot \frac{(\vec{ p } \times \vec{ q })}{|\vec{ p } \times \vec{ q }|}
\left\{\vec{ p } \times \vec{ q } \equiv \begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 1 & \frac{1}{2} & \frac{-1}{12} \\ 1 & 1 & \frac{1}{6}\end{vmatrix}=\frac{1}{6} \hat{ i }-\frac{1}{4} \hat{ j }+\frac{1}{2} \hat{ k } \text { or } 2 \hat{ i }-3 \hat{ j }+6 \hat{ k }\right\}
\text { S.D. }=\frac{(-\hat{ i }+2 \hat{ j }-\hat{ k }) \cdot(2 \hat{ i }-3 \hat{ j }+6 \hat{ k })}{\sqrt{2^2+3^2+6^2}}=\left|\frac{-14}{7}\right|=2

A

(2,0)

B

(0,2)

C

(0,0)

D

(0,-2)

Solution

( z -2 i )(\overline{ z }+2 i )=4( z + i )(\overline{ z }- i )
z \overline{ z }+4+2 i ( z -\overline{ z })=4( z \overline{ z }+1+ i (\overline{ z }- z ))
3 z \overline{ z }-6 i ( z -\overline{ z })=0
x ^2+ y ^2-2 i (2 iy )=0
x ^2+ y ^2+4 y =0

A

2 e^4+8

B

11

C

8

D

10

Solution

\Rightarrow \displaystyle\lim _{x \rightarrow \frac{\pi^{+}}{2}} e^{\frac{\cot 6 x}{\cot 4 x}}=\displaystyle\lim _{x \rightarrow \frac{\pi^{+}}{2}} e ^{\frac{\sin 4 x \times \cos 6 x}{\sin 6 x \cdot \cos 4 x}}=e^{2 / 3}
\Rightarrow \displaystyle\lim _{x \rightarrow \frac{\pi^{-}}{2}}(1+|\cos x|)^{\frac{\lambda}{\cos x} \mid}=e^\lambda
\Rightarrow f(\pi / 2)=\mu
For continuous function \Rightarrow e ^{2 / 3}= e ^\lambda=\mu
\lambda=\frac{2}{3}, \mu= e ^{2 / 3}
Now, 9 \lambda+6 \log _{ e } \mu+\mu^6- e ^{6 \lambda}=10

A

\begin{bmatrix}1 & -2023 i \\ 0 & 1\end{bmatrix}

B

\begin{bmatrix}1 & 0 \\ 2023 i & 1\end{bmatrix}

C

\begin{bmatrix}1 & 2023 i \\ 0 & 1\end{bmatrix}

D

\begin{bmatrix}1 & 0 \\ -2023 i & 1\end{bmatrix}

Solution

AA ^{ T }=\begin{bmatrix} \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{bmatrix}\begin{bmatrix}\frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{bmatrix}=\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}
B ^2=\begin{bmatrix}1 & - i \\ 0 & 1\end{bmatrix} \begin{bmatrix}1 & - i \\ 0 & 1\end{bmatrix}=\begin{bmatrix} 1 & -2 i \\ 0 & 1\end{bmatrix}
B ^3= \begin{bmatrix}1 & -3 i \\ 0 & 1\end{bmatrix}
:
:
B ^{2023}=\begin{bmatrix}1 & -2023 i \\ 0 & 1\end{bmatrix}
M = A ^{ T } B A
M ^2= M \cdot M = A ^{ T } BA A ^{ T } BA = A ^{ T } B ^2 A
M ^3= M ^2 \cdot M = A ^{ T } B ^2 AA ^{ T } BA = A ^{ T } B ^3 A
:
:
M ^{2023}=\ldots \ldots \ldots \ldots . . A ^{ T } B ^{2023} A
AM ^{2023} A ^{ T }= AA ^{ T } B ^{2023} AA ^{ T }= B ^{2023}
=\begin{bmatrix} 1 & -2023 i \\0 & 1\end{bmatrix}
Inverse of \left( AM ^{2023} A ^{ T }\right) is \begin{bmatrix}1 & 2023 i \\ 0 & 1\end{bmatrix}

A

\frac{\gamma}{\alpha}=\frac{5}{8}

B

\frac{\beta}{\gamma}=-5

C

\frac{\alpha \beta}{\gamma}=\frac{4}{15}

D

\frac{\alpha}{\beta}=-8

Solution

L : \frac{ x +1}{2}=\frac{ y -1}{5}=\frac{ z +1}{-1}=\lambda
image
Let foot of perpendicular is
P (2 \lambda-1,5 \lambda+1,-\lambda-1)
\overrightarrow{ PA }=(3-2 \lambda) \hat{ i }-(5 \lambda+1) \hat{ j }+(6+\lambda) \hat{ k }
Direction ratio of line \Rightarrow \vec{b}=2 \hat{i}+5 \hat{j}-\hat{k}
\text { Now, } \Rightarrow \overrightarrow{ PA } \cdot \overrightarrow{ b }=0
\Rightarrow 2(3-2 \lambda)-5(5 \lambda+1)-(6+\lambda)=0
\Rightarrow \lambda=\frac{-1}{6}
P (2 \lambda-1,5 \lambda+1,-\lambda-1) \equiv P (\alpha, \beta, \gamma)
\Rightarrow \alpha=2\left(-\frac{1}{6}\right)-1=-\frac{4}{3} \Rightarrow \alpha=-\frac{4}{3}
\Rightarrow \beta=5\left(-\frac{1}{6}\right)+1=\frac{1}{6} \Rightarrow \beta=\frac{1}{6}
\Rightarrow \gamma=-\lambda-1=\frac{1}{6}-1 \Rightarrow \gamma=-\frac{5}{6}
\therefore Check options

A

3

B

5

C

4

D

2

Solution

Since,
-\sqrt{2} \leq \sin x-\cos x \leq \sqrt{2}
\therefore -2 \leq \sqrt{2}(\sin x-\cos x) \leq 2
(\text { Assume } \sqrt{2}(\sin x-\cos x)=k)
-2 \leq k \leq 2 \ldots \text { (i) }
f(x)=\log _{\sqrt{ m }}( k + m -2)
\text { Given, }
0 \leq f( x ) \leq 2
0 \leq \log _{\sqrt{ m }}( k + m -2) \leq 2
1 \leq k + m -2 \leq m
- m +3 \leq k \leq 2 \ldots \text { (ii) }
From eq. (i) & (ii), we get -m+3=-2
\Rightarrow m=5

A

\left(\frac{9}{2}, \infty\right)

B

\left(0, \frac{9}{2}\right)

C

\left(-\frac{9}{2}, \frac{9}{2}\right)

D

\left(-\infty, \frac{9}{2}\right)

Solution

f(x)=2 x^3+(2 p-7) x^2+3(2 p-9) x-6
f^{\prime}(x)=6 x^2+2(2 p-7) x+3(2 p-9)
f^{\prime}(0)<0
\therefore 3(2 p -9)<0
p <\frac{9}{2}
p \in\left(-\infty, \frac{9}{2}\right)

A

3(\hat{i}-\hat{j}-\hat{k})

B

3(\hat{i}-\hat{j}+\hat{k})

C

3(\hat{i}+\hat{j}-\hat{k})

D

3(\hat{i}+\hat{j}+\hat{k})

Solution

\vec{ a } \times \vec{ b }=(\hat{ i }-\hat{ j })
Taking cross product with \vec{a}
\Rightarrow \vec{a} \times(\vec{a} \times \vec{b})=\vec{a} \times(\hat{i}-\hat{j})
\Rightarrow (\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}=\hat{i}+\hat{j}+2 \hat{k}
\Rightarrow \vec{a}-3 \vec{b}=\hat{i}+\hat{j}+2 \hat{k}
\Rightarrow 2 \vec{a}-6 \vec{b}=2 \hat{i}+2 \hat{j}+4 \hat{k}
\Rightarrow \vec{a}-6 \vec{b}=3 \hat{i}+3 \hat{j}+3 \hat{k}

A

is-1

B

is 0

C

is 1

D

does not exist

Solution

\frac{d y}{d t}+\alpha y=\gamma e^{-\beta t}
\text { I.F. }=e^{\int \alpha d t}=e^{\alpha t}
Solution \Rightarrow y \cdot e^{\alpha t}=\int \gamma c^{-\beta T } \cdot c^{\alpha t} d t
\Rightarrow y e^{\alpha t}=\gamma \frac{e^{(\alpha-\beta) t}}{(\alpha-\beta)}+c
\Rightarrow y=\frac{\gamma}{e^{\beta t}(\alpha-\beta)}+\frac{c}{e^{\alpha t}}
So, \displaystyle\lim _{t \rightarrow \infty} y(t)=\frac{\gamma}{\infty}+\frac{c}{\infty}=0

A

16

B

2

C

8

D

4

Solution

n(s)=36
Given : N -2, \sqrt{3 N }, N +2 are in G.P.
3 N =( N -2)( N +2)
3 N = N ^2-4
\Rightarrow N ^2-3 N -4=0
( N -4)( N +1)=0 \Rightarrow N =4 \text { or } N =-1 \text { rejected }
( Sum =4) \equiv\{(1,3),(3,1),(2,2)\}
n ( A )=3
P ( A )=\frac{3}{36}=\frac{1}{12}=\frac{4}{48} \Rightarrow k =4

Answer: 31

Solution

image
(1,1)(1,2)-(1,14) \Rightarrow 14 pts.
If x=2, y=\frac{27}{2}=13.5
(2,2)(2,4) \ldots(2,12) \Rightarrow 6 pts.
If x =3, y =\frac{51}{4}=12.75
(3,3)(3,6)-(3,12) \Rightarrow 4 pts.
If x=4, y=12
(4,4)(4,8) \Rightarrow 2 pts.
If x=5 \cdot y=\frac{45}{4}=11.25
(5,5),(5,10) \Rightarrow 2 pts.
If x=6, y=\frac{21}{2}=10.5
(6,6) \Rightarrow 1 pt
If x=7, y=\frac{39}{4}=9.75
(7,7) \Rightarrow 1 pt
If x=8, y=9
(8,8) \Rightarrow 1 pt
If x =9 y =\frac{33}{4}=8.25 \Rightarrow no pt.
Total =31 pts.

Answer: 20

Solution

\int\limits_{\frac{1}{3}}^3|\ell n x| d x=\int\limits_{\frac{1}{3}}^1(-\ell n x) d x+\int\limits_1^3(\ell n x) d x
=-[x \ell n x-x]_{1 / 3}^1+[x \ell n x-x]_1^3
=-\left[-1-\left(\frac{1}{3} \ell n \frac{1}{3}-\frac{1}{3}\right)\right]+[3 \ell n 3-3-(-1)]
=\left[-\frac{2}{3}-\frac{1}{3} \ell n \frac{1}{3}\right]+[3 \ell n 3-2]
=-\frac{4}{3}+\frac{8}{3} \ell n 3
=\frac{4}{3}(2 \ell n 3-1)
=\frac{4}{3}\left(\ell n \frac{9}{ e }\right)
\therefore m =4, n =3
Now, m ^2+ n ^2-5=16+9-5=20

Answer: 6860

Solution

7 Red apple(RA),5 white apple(WA), 8 oranges ( O )
5 fruits to be selected (Note:- fruits taken different)
Possible selections :- (2 O , 1 RA , 2 WA ) or (2 O,
2 RA , 1 WA ) or (3 O , 1 RA , 1 WA )
\Rightarrow{ }^8 C _2{ }^7 C _1{ }^5 C _2+{ }^8 C _2{ }^7 C _2{ }^5 C _1+{ }^8 C _3{ }^7 C _1{ }^5 C _1
\Rightarrow 1960+2940+1960
\Rightarrow 6860

Answer: 3

Solution

m _{ PQ } \cdot m _{ QR }=-1
\Rightarrow \frac{10-2}{9+3} \times \frac{10-4}{9-\alpha}=-1 \Rightarrow \alpha=13
m _{ OP } \cdot m _{ QS }=-1 \Rightarrow m _{ QS }=-\frac{4}{7}
image
Equation of QS
y-10=-\frac{4}{7}(x-9)
\Rightarrow 4 x+7 y=106 \ldots .(1)
m_{O R} \cdot m_{R S}=-1 \Rightarrow m_{R S}=-8
Equation of RS
y-4=-8(x-13)
\Rightarrow 8 x+y=108...(2)
Solving eq. (1) & (2)
x _1=\frac{25}{2} y _1=8
S \left( x _1, y _1\right) \text { lies on } 2 x - ky =1
25-8 k =1
\Rightarrow 8 k =24
\Rightarrow k =3

Answer: 25

Solution

\cos 2 \theta \cdot \cos \frac{\theta}{2}=\cos 3 \theta \cdot \cos \frac{9 \theta}{2}
\Rightarrow 2 \cos 2 \theta \cdot \cos \frac{\theta}{2}=2 \cos \frac{9 \theta}{2} \cdot \cos 3 \theta
\Rightarrow \cos \frac{5 \theta}{2}+\cos \frac{3 \theta}{2}=\cos \frac{15 \theta}{2}+\cos \frac{3 \theta}{2}
\Rightarrow \cos \frac{15 \theta}{2}=\cos \frac{5 \theta}{2}
\Rightarrow \frac{15 \theta}{2}=2 k \pi \pm \frac{5 \theta}{2}
5 \theta=2 k \pi \text { or } 10 \theta=2 k \pi
\theta=\frac{2 k \pi}{5} \theta=\frac{ k \pi}{5}
\therefore \theta=\left\{-\pi, \frac{-4 \pi}{5}, \frac{-3 \pi}{5}, \frac{-2 \pi}{5}, \frac{-\pi}{5}, 0, \frac{\pi}{5}, \frac{2 \pi}{5}, \frac{3 \pi}{5}, \frac{4 \pi}{5}, \pi\right\}
m =5, n =5
\therefore m \cdot n =25

Answer: 7

Solution

(2023)^{2023}
=(2030-7)^{2023}
=(35 K -7)^{2023}
={ }^{2023} C _0(35 K )^{2023}(-7)^0+{ }^{2023} C _1(35 K )^{2022}(-7)+\ldots .+
\ldots \cdots+{ }^{2023} C _{2022}(-7)^{2023}
=35 N -7^{2023} .
\text { Now },-7^{2023}=-7 \times 7^{2022}=-7\left(7^2\right)^{1011}
=-7(50-1)^{1011}
=-7\left({ }^{1011} C _0 50^{1011}-{ }^{1011} C _1(50)^{1010}+\ldots \ldots \cdot{ }^{1011} C _{1011}\right)
=-7(5 \lambda-1)
=-35 \lambda+7
\therefore when (2023)^{2023} is divided by 35 remainder is 7

Answer: 9

Solution

E _1: \text { Smokers }
P \left( E _1\right)=\frac{1}{4}
E _2: \text { non-smokers }
P \left( E _2\right)=\frac{3}{4}
E : diagnosed with lung cancer
P\left(E / E_1\right)=\frac{27}{28}
P\left(E / E_2\right)=\frac{1}{28}
P\left(E_1 / E\right)=\frac{P\left(E_1\right) P\left(E / E_1\right)}{P(E)}
=\frac{\frac{1}{4} \times \frac{27}{28}}{\frac{1}{4} \times \frac{27}{28}+\frac{3}{4} \times \frac{1}{28}}=\frac{\not{27}^9}{\not{30}_{10}}=\frac{9}{10}
K=9

Answer: 18

Solution

\vec{ r }=(\hat{ i }+2 \hat{ j }+3 \hat{ k })+\lambda(\hat{ i }+\hat{ j }+\hat{ k }) \vec{ r }=\vec{ a }+\lambda \vec{ p }
\vec{ r }=(+\hat{ i }-\hat{ j }+2 \hat{ k })+\mu(2 \hat{ i }-\hat{ j }) \vec{ r }=\vec{ b }+\mu \vec{ q }
\vec{ p } \times \vec{ q }=\begin{vmatrix} \hat{ i } & \hat{ j } & \hat{ k } \\ 1 & 1 & 1 \\ 2 & -1 & 0\end{vmatrix}=\hat{ i }+2 \hat{ j }-3 \hat{ k }
d =\left|\frac{(\vec{ b }-\vec{ a }) \cdot(\vec{ p } \times \vec{ q })}{|\vec{ p } \times \vec{ q }|}\right|
d =\left|\frac{(-3 \hat{ j }-\hat{ k }) \cdot(\hat{ i }+2 \hat{ j }-3 \hat{ k })}{\sqrt{14}}\right|
=\left|\frac{-6+3}{\sqrt{14}}\right|=\frac{3}{\sqrt{14}}
\alpha=\frac{3}{\sqrt{14}}
Now, 28 \alpha^2=\not{28} ^2 \times \frac{9}{\not{14}}=18

Answer: 45

Solution

image
\alpha+\beta=-60^{\frac{1}{4}} \& \alpha \beta= a
Given \alpha^4+\beta^4=-30
\Rightarrow\left(\alpha^2+\beta^2\right)^2-2 \alpha^2 \beta^2=-30
\Rightarrow\left\{(\alpha+\beta)^2-2 \alpha \beta\right\}^2-2 a^2=-30
\Rightarrow\left\{60^{\frac{1}{2}}-2 a \right\}^2-2 a ^2=-30
\Rightarrow 60+4 a ^2-4 a \times 60^{\frac{1}{2}}-2 a ^2=-30
\Rightarrow 2 a ^2-4.60^{\frac{1}{2}} a +90=0
Product =\frac{90}{2}=45

Answer: 3

Solution

a , b , \frac{1}{18} \rightarrow GP
\frac{ a }{18}= b ^2 ....(i)
\frac{1}{ a }, 10, \frac{1}{ b } \rightarrow AP
\frac{1}{ a }+\frac{1}{ b }=20
\Rightarrow a + b =20 ab \text {, from eq. (i); we get }
\Rightarrow 18 b ^2+ b =360 b ^3
\Rightarrow 360 b ^2-18 b -1=0 \{\because b \neq 0\}
\Rightarrow b =\frac{18 \pm \sqrt{324+1440}}{720}
\Rightarrow b =\frac{18+\sqrt{1764}}{720} \{\because b >0\}
\Rightarrow b =\frac{1}{12}
\Rightarrow a =18 \times \frac{1}{144}=\frac{1}{8}
Now, 16 a+12 b=16 \times \frac{1}{8}+12 \times \frac{1}{12}=3