Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f (x)=x2-2. if 6∫3f (x)dx=3f (c) for some c ∈ (3, 6), then the value of c is equal to
Q. Let
f
(
x
)
=
x
2
−
2.
if
6
∫
3
​
f
(
x
)
d
x
=
3
f
(
c
)
for some
c
∈
(
3
,
6
)
, then the value of
c
is equal to
1345
201
KEAM
KEAM 2013
Integrals
Report Error
A
12
​
B
21
​
C
19
​
D
17
​
E
13
​
Solution:
Given,
f
(
x
)
=
x
2
−
2
…
(
i
)
Now,
3
∫
6
​
f
(
x
)
d
x
=
3
f
(
c
)
⇒
3
∫
6
​
(
x
2
−
2
)
d
x
=
3
f
(
c
)
[from Eq (i)]
⇒
[
3
x
3
​
−
2
x
]
3
6
​
=
3
f
(
c
)
⇒
[
72
−
12
−
9
+
6
]
=
3
f
(
c
)
⇒
78
−
21
=
3
f
(
c
)
⇒
3
f
(
c
)
=
57
⇒
f
(
c
)
=
19
⇒
c
2
−
2
=
19
[from Eq. (i)]
⇒
c
2
=
21
⇒
c
=
21
​
which lies between
(
3
,
6
)