Q.
If α and β are the roots of x2−x+1=0, then the value of α2013+β2013 is equal to
2366
231
WBJEEWBJEE 2013Complex Numbers and Quadratic Equations
Report Error
Solution:
Given equation is x2−x+1=0 x=21±1−4(∵x=2ab±b2−4ac) =21±i3=21+i3,21−i3 ⇒−x=2−1+i3,2−1−i3 ⇒+x=ω,−ω2
Since, (α,β) are the roots of given equation. Then, α=−ω and β=−ω2 ∴α2013+β2013=−(ω)2013+(−ω2)2013 =−ω2013−ω4026 =−(ω3)671−(ω3)1342 =−(1)671−(1)1342(∵ω3=1) =−1−1=−2