JEE Advanced Question Paper with Solution JEE Advanced 2021 Paper 2

JEE Advanced Physics Question Paper with Solution JEE Advanced 2021 Paper 2

A

$u =0.8 \,v$ and $f _{ s }= f _{0}$

B

$u=0.8\, v$ and $f _{ s }=2\, f _{0}$

C

$u =0.8 \,v$ and $f _{ s }=0.5\, f _{0}$

D

$u=0.5 \,v$ and $f _{ s }=1.5 \,f _{0}$

Solution

image
Natural frequency of closed pipe
$f =(2 n +1) f _{0}$
$f _{0}$ is fundamental frequency
$n =0,1,2, \ldots \ldots \ldots .$
frequency of source received by pipe
$f ^{\prime}= f _{ s }\left[\frac{ v -0}{ v - u }\right]$
For resonance $f ^{\prime}= f$
$f_{s}\left[\frac{v}{v-u}\right]=(2 n+1) f_{0}$
If $u=0.8 \,v\,\,\,\, f _{ s }= f _{0}$
$f ^{\prime}=\frac{ v }{0.2 \,v } f _{0}=5\, f _{0}$
for $n =2$ pipe can be in resonance
Hence, option (A) is correct.
If $u =0.8 \,v \,\,\, f _{ s }=2\, f _{0}$
$f ^{\prime}=\frac{ v }{0.2 v } \times 2\, f _{0}=10\, f _{0}$
If $u=0.8\, v ,\,\,\, f_{ S }=0.5\, f _{0}$
$f ^{\prime}=\frac{ v }{0.2\, v } \times 0.5\, f _{0}=2.5\, f _{0}$
Not possible
If $u=0.5\, v , \,\,\,f_{ S }=1.5\, f _{0}$
$f ^{\prime}=\frac{ v }{0.5\, v } \times 1.5\, f _{0}=3\, f _{0}$
for $n =1 \,\,\,f =3 \,f _{0}$
pipe can be in resonance
Hence, option (D) is correct.

A

The value of $\Delta e$ (in radians) is greater than that of $\Delta n$

B

$\Delta e$ is proportional to $\Delta n$

C

$\Delta e$ lies between $2.0$ and $3.0$ milliradians, if $\Delta n =2.8 \times 10^{-3}$

D

$\Delta e$ lies between $1.0$ and $1.6$ milliradians, if $\Delta n =2.8 \times 10^{-3}$

Solution

image
Diagram at minimum deviation for $n _{1}= n _{2}= n$
$n =1.5$
$r_{1}=r_{2}=\theta / 2=30^{\circ}$
for face $AQ$
$n \sin r _{2}=\sin e$
$1.5 \sin 30^{\circ}=\frac{3}{2} \times \frac{1}{2}=\sin e$
$\sin e =\frac{3}{4}, \,\,\, \cos e =\frac{\sqrt{7}}{4}$
When $n _{2}$ is given small variation there will be no change in path of light ray inside prism.
As deviation on face $AC$ is zero.
So, $r_{2}=30^{\circ}$
Now for face $AQ$
$n _{2} \sin 30^{\circ}=\sin e$
for small change in $n _{2}$ change in $e$ is given by
$dn _{2} \sin 30^{\circ}=\cos\, e \,de$
or $dn _{2}=\Delta n\,\, de =\Delta e$
$\Delta n \sin 30^{\circ}=\cos e \Delta e$
$\Delta n \frac{1}{2}=\frac{\sqrt{7}}{4} \Delta e$
$\Delta n =\frac{\sqrt{7}}{2} \Delta e \ldots$ (i)
$\Delta n >\Delta e$
$\Delta n \propto \Delta e$
Hence, option (B) is correct.
$\Delta e =\frac{2.8 \times 10^{-3} \times 2}{\sqrt{7}}$
Hence, option (C) is correct.

A

$\frac{\text { Energy }}{\text { Charge } \times \text { Current }}$

B

$\frac{\text { Force }}{\text { Lenght } \times \text { Time }}$

C

$\frac{\text { Energy }}{\text { Volume }}$

D

$\frac{\text { Power }}{\text { Area }}$

Solution

$\vec{ S }=\vec{ E } \times \vec{ B }$
Method - 1:
$\vec{ S }$ is pointing vector which is defined as energy flowing per unit area in unit time.
S.I. unit of $S$ is Watt $/ m ^{2}$.
Method 2:
$\because B =\mu_{0} ni \Rightarrow \frac{1}{\mu_{0}}=\frac{ ni }{ B } $
$S =\frac{1}{\mu_{0}} EB \cos \theta = niE \cos \theta$
S.I. unit of $S =\frac{1}{\text { meter }} \times \frac{q}{\text { time }} \times \frac{\text { Force }}{q}$
$=\frac{\text { Force }}{\text { meter }-\text { time }}$

A

$E_{p}+E_{Q}=c^{2} \delta$

B

$E_{p}=\left(\frac{M_{p}}{M_{p}+M_{Q}}\right) c^{2} \delta$

C

$\frac{ v _{ P }}{ v _{ Q }}=\frac{ M _{ Q }}{ M _{ P }}$

D

The magnitude of momentum for $P$ as well as $Q$ is $c \sqrt{2 \mu \delta}$, where $\mu=\frac{ M _{ p } M _{ Q }}{\left( M _{ p }+ M _{ Q }\right)}$

Solution

Energy released during process
$Q =\delta c ^{2}$ .... (1)
$\because$ momentum is conserved in process.
$\Rightarrow 0= m _{ p } v _{ p }- m _{ Q } . v _{ Q }$
$\Rightarrow \frac{ v _{ P }}{ v _{ Q }}=\frac{ m _{ Q }}{ m _{ P }}$ ....(2)
$E _{ P }=\frac{1}{2} m _{ p } v _{ P }^{2}$
$E _{ Q }=\frac{1}{2} m _{ Q } v _{ Q }^{2}$
$\Rightarrow \frac{ E _{ p }}{ E _{ Q }}=\frac{ m _{ Q }}{ m _{ p }}$ .... (3)
Solving (1) and (3),
$E_{P}=\frac{m_{Q}}{m_{P}+m_{Q}} \delta c^{2}$
$E_{Q}=\frac{m_{p}}{m_{p}+m_{Q}} \delta c^{2}$
Momentum $P=\sqrt{2 m_{P} E_{p}}=\sqrt{2 m_{Q} E_{Q}}$
$=\sqrt{2 m _{ p } \frac{ m _{ Q }}{ m _{ p }+ m _{ Q }} \cdot \delta c ^{2}}= c \sqrt{\frac{2 m _{ p } m _{ Q }}{ m _{ p }+ m _{ Q }} \cdot \delta}$

A

$\vec{ B }( x , y )$ is perpendicular to the $xy$-plane at any point in the plane

B

$|\vec{ B }( x , y )|$ depends on $x$ and $y$ only through the radial distance $r =\sqrt{ x ^{2}+ y ^{2}}$

C

$|\vec{ B }( x , y )|$ is non-zero at all points for $r < R$

D

$\vec{ B }( x , y )$ points normally outward from the $xy$-plane for all the points between the two loops

Solution

Consider a circular loop of radius $r$ in $x - y$ plane and having centre at origin
$\oint \vec{ B } \cdot \overrightarrow{ d \ell}=0$
$B \oint d \ell \cos \theta=0$
$\because B \neq 0 \,\,\,$ for given $r$
$\Rightarrow \cos \theta=0$
$\theta=90^{\circ}$
image
Here $d \ell$ is in $xy$ plane $\Rightarrow B$ is normal to plane (B can't be in $xy$ plane as its magnetic lines would have been in radial direction)
Also, for given $r , B$ must be same in magnitude for all points on loop of radius $r$.
At centre $B =\left(\frac{\mu_{0} i _{1}}{2 R }-\frac{\mu_{0} i _{2}}{4 R }\right)$
(inwards)
image
For point $P$, Let field of inner loop increases $x_{1}$ times and that of outer loop increases $x _{2}$ times
$\Rightarrow $ magnetic field at $P$
$B _{ P }=\left( x _{1} \frac{\mu_{0} i _{1}}{2 R }- x _{2} \frac{\mu_{0} i _{2}}{4 R }\right)$
For $B _{ P }=0, i _{2}=\left(\frac{ x _{1}}{ x _{2}}\right) \cdot\left(2 i _{1}\right)$
$\because B$ changes more rapidly as point $P$ come closer to circumference.
$\Rightarrow x _{1} > x _{2}$
Or $i _{2} >2 i _{1}$ (which is given condition)
So, there are points inside inner loop where magnetic field will be zero.

Answer: 100.00

Solution

image
$P _{\text {lamp }}=500 \,W$
$\Rightarrow V _{\text {lamp }} i _{\text {lamp }}=500$
$\Rightarrow (100) i _{\text {lamp }}=500$
$i _{\text {lamp }}=5 A$
Impedance of circuit $Z =\frac{ V _{\text {source }}}{ i _{\text {source }}}$
$=\frac{200}{5}=40\, \Omega$
Resistance of lamp $R =\frac{ V _{\text {lamp }}}{ i _{\text {source }}}$
$=20 \,\Omega$
Reactance of capacitance
$X _{ C }=\sqrt{ Z ^{2}- R ^{2}}=20 \sqrt{3} \Omega$
$\frac{1}{\omega C }=20 \sqrt{3}$
$C =\frac{1}{20 \sqrt{3} \times 2 \times \pi \times 50}$
$=100 \,\mu F$

A

$m / r ^{3}$

B

$m ^{2} / r ^{2}$

C

$m / r ^{2}$

D

$m ^{2} / r$

Solution

$\frac{\mu_{0}}{2 \pi} \frac{m}{r^{3}}=\frac{\mu_{0} i_{1}}{2 a}$
$\Rightarrow i_{1} \propto \frac{m}{r^{3}}$

A

$m / r ^{5}$

B

$m ^{2} / r ^{5}$

C

$m ^{2} / r ^{6}$

D

$m ^{2} / r ^{7}$

Solution

$dW = F . d x =\frac{- Km \left( i _{1} \pi a ^{2}\right)}{ r ^{4}}( dr )$
$i _{1}=\frac{ ma }{\pi r ^{3}}$
$W =\int\limits_{\infty}^{r} \frac{ km \left(\frac{ ma }{\pi r ^{3}} \times \pi a ^{2}\right) dr }{ r ^{3}}= km ^{2} a ^{3} \int \frac{ dr }{ r ^{7}}$
$W \alpha \frac{ m ^{2}}{ r ^{6}}$

A

$\sqrt{2}$

B

$\sqrt{3}$

C

$2$

D

$3$

Solution

image
Pressure on either side is equal
$C _{ V }=2 R ; C _{ P }=3 R \Rightarrow \gamma=3 / 2$
image
Left chamber
$Q =\Delta U _{1}+\Delta W _{1}$
Right chamber
$0=\Delta U _{2}+\Delta W _{2}$
$\Delta W _{1}+\Delta W _{2}=0$
$\Rightarrow Q =\Delta U _{1}+\Delta U _{2}$
$=2 R \left( T _{ L }- T _{0}\right)+2 R \left( T _{ R }- T _{0}\right)$ ... (i)
Also pressure each side of piston is equal
$\Rightarrow \frac{ RT _{ L }}{3 V _{0} / 2}=\frac{ RT _{ R }}{ V _{0} / 2}$ ...(ii)
$\Rightarrow \left( T _{ L } / 3\right)= T _{ R }$
For right chamber $\Rightarrow $ adiabatic compression
$\Rightarrow TV ^{\gamma-1}=$ constant
$T _{0} V _{0}^{0.5}= T _{ R }\left(\frac{ V _{0}}{2}\right)^{0.5}$
$ \Rightarrow T _{ R }=\sqrt{2} T _{0}$
$\Rightarrow T _{ L }=3 \sqrt{2} T _{0}$
$\frac{ T _{ R }}{ T _{0}}=\sqrt{2}$

A

$4(2 \sqrt{2}+1)$

B

$4(2 \sqrt{2}-1)$

C

$(5 \sqrt{2}+1)$

D

$(5 \sqrt{2}-1)$

Solution

image
Pressure on either side is equal
$C _{ V }=2 R ; C _{ P }=3 R \Rightarrow \gamma=3 / 2$
image
Left chamber
$Q =\Delta U _{1}+\Delta W _{1}$
Right chamber
$0=\Delta U _{2}+\Delta W _{2}$
$\Delta W _{1}+\Delta W _{2}=0$
$\Rightarrow Q =\Delta U _{1}+\Delta U _{2}$
$=2 R \left( T _{ L }- T _{0}\right)+2 R \left( T _{ R }- T _{0}\right)$ ... (i)
Also pressure each side of piston is equal
$\Rightarrow \frac{ RT _{ L }}{3 V _{0} / 2}=\frac{ RT _{ R }}{ V _{0} / 2}$ ...(ii)
$\Rightarrow \left( T _{ L } / 3\right)= T _{ R }$
$Q =2 R \left(3 \sqrt{2} T _{0}- T _{0}\right)=2 R \left(\sqrt{2} T _{0}- T _{0}\right)$
$=8 \sqrt{2} RT _{0}-4 RT _{0}$
$\Rightarrow \frac{ Q }{ RT _{0}}=8 \sqrt{2}-4$

Answer: 3

Solution

image
$R _{ AB }=50\, \Omega$
So, $R _{\Lambda P }=\frac{50}{100} \times 72=36 \,\Omega$
$I =\frac{\varepsilon}{ r _{1}+50+25}$ ...(i)
$-36 I -\frac{\varepsilon}{2}- Ir _{1}+\varepsilon=0$
Solving equation (i) and (ii)
$r _{1}=3 \,\Omega$

Answer: 9

Solution

image
Both will revolve about common center of mass
$x=\frac{3 M_{s}}{6 M_{s}+3 M_{s}} \times 9 R=3 R $ ... (i)
$\frac{G 6 M_{s} \times 3 M_{s}}{(9 R)^{2}}=6 M_{s}\left(\omega^{2} x\right)$ .... (ii)
Solving equation (i) and (ii) we get
$\omega^{2} =\frac{ GM _{ S }}{81 R ^{3}} $
$T ^{\prime 2} =\frac{4 \pi^{2} R ^{3}}{ GM _{ S }} \times 81$ ... (iii)
For the motion of earth around Sun
$T ^{2}=\frac{4 \pi^{2} R ^{3}}{ GM _{ s }}$ .... (iv)
From (iii) and (iv)
$ T ^{\prime 2}=81 T ^{2} $
$ T ^{\prime}=9 T$

JEE Advanced Chemistry Question Paper with Solution JEE Advanced 2021 Paper 2

A

$Q=K N O_{2}, W=L i A 1 H_{4}$

B

$R=$ benzenamine, $V=K C N$

C

$Q= AgNO _{2}, R=$ phenylmethanamine

D

$W=L i A l H_{4}, V=A g C N$

A

The rate constant, $k$, of the reaction is $13.86 \times 10^{-4} s ^{-1}$.

B

Half-life of $X$ is $50\, s$.

C

At $50\, s,-\frac{d[X]}{d t}=13.86 \times 10^{-3} mol\, L^{-1} s^{-1}$.

D

At $100 \,s,-\frac{d[Y]}{d t}=3.46 \times 10^{-3} mol\, L^{-1} s^{-1}$.

Solution

image
rate $=-\frac{1}{2} \frac{ d x }{ dt }=-\frac{ dy }{ dt }=\frac{ dP }{ dt }= K [ X ]$
$-\frac{1}{2} \frac{ d x }{ dt }= K [ X ]$
$-\frac{ dx }{ dt }=2 K [ X ]= K ^{1}[ X ]$
Half life is $t =50 \,sec$
$2 K =\frac{0.653 L }{50}$
$K =\frac{0.6932}{100}=6.332 \times 10^{-3}$
$t = 5 0 \,sec$
$-\frac{ dx }{ dt }=2 K [ X ]$
$-\frac{ dx }{ dt }=2 \times 6.332 \times 10^{-3} \times 1$
$=13.864 \times 10^{-3} mole / L / Sec$
$-\frac{ dy }{ dt }= K [ X ]=6.332 \times 10^{-3}\left(\frac{1}{2}\right)$
$=3.46 \times 10^{-3} mole / L / Sec ^{-1}$

A

$Cd$ and $Ni$

B

$Cd$ and $Fe$

C

$Ni$ and $Pb$

D

$Ni$ and $Fe$

Solution

(A) $ Cd + Ni ^{+2} \longrightarrow Cd ^{+2}+ Ni$
$ E _{ cell }=0.40+(-24)-\frac{0.0591}{2} \log \frac{0.001}{0.1}$
$=0.16+\frac{0.0591}{2} \times 2$
$=6.64+0.551=0.71(+ ve )$
(B) $ E _{\text {cell }}=0.40+(-0.44)-\frac{0.591}{2} \log \frac{0.01}{0.1}$
$=-0.04+\frac{0.591}{2} \times 2$
$=-0.04+0.06=0.02(+ ve )$
(C) $ E _{\text {cell }}=0.24+(-0.13)+\frac{.0591}{2} \times 2 $
$=0.11+0.06=0.33(+ ve )$
(D) $E _{\text {cell }}=0.24+(-0.44)+\frac{0.0591}{2} \times 2$
$=-0.20+0.06=-0.14(- ve )$

A

$\left[ FeCl _{4}\right]^{-}$and $\left[ Fe ( CO )_{4}\right]^{2-}$

B

$\left[ Co ( CO )_{4}\right]^{-}$and $\left[ CoCl _{4}\right]^{2-}$

C

$\left[ Ni ( CO )_{4}\right]$ and $\left[ Ni ( CN )_{4}\right]^{2-}$

D

$\left[ Cu ( py )_{4}\right]^{+}$and $\left[ Cu ( CN )_{4}\right]^{3-}$

Solution

(A) $\left[ FeCl _{4}\right]^{-}$
$Fe ^{+3}=3 d ^{5}, Cl ^{-}$ weak field liganol $sp ^{3}$
$\left[ Fe ( CO )_{4}\right]^{-2}$
$Fe ^{-2} =3 d ^{8} 4 s ^{2}$
$CO$ strong field liganol pairing occurs
$Fe ^{-2}=3 d ^{10}$
hence $sp ^{3}$
(B) $\left[ Co ( CO )_{4}\right]^{-}$
$Co =3 d ^{8} 4 s ^{2} $
due to $CO$ pairing occurs
Hence $=3 d ^{10}$
$\left[ CoCl _{4}\right]^{-2}$
$Co ^{+2}=3 d ^{7}$,
$Cl ^{-}$ weak field liganol $sp ^{3}$
(D) $\left[ Cu ( Py )_{4}\right]^{+1}$
$Cu ^{+1}=3 d ^{10}, sp ^{3}$
$\left[ Cu ( CN )_{4}\right]^{-3}$
$Cu ^{+1}=3 d ^{10}, sp ^{3}$

A

Upon heating, $H _{3} PO _{3}$ undergoes disproportionation reaction to produce $H _{3} PO _{4}$ and $PH _{3}$.

B

While $H _{3} PO _{3}$ can act as reducing agent, $H _{3} PO _{4}$ cannot.

C

$H _{3} PO _{3}$ is a monobasic acid.

D

The $H$ atom of $P - H$ bond in $H _{3} PO _{3}$ is not ionizable in water.

Solution

$H_3PO_3 \xrightarrow{\Delta} H_3PO_4 + PH_3$
image
$P - H$ bond is responsible for it is reducing character, $H _{3} PO _{4}$ doesnot have.
$H _{3} PO _{3}$ is a dibasic acid in oxyacids of phosphors $O - H$ bond is ionisable where as $P - H$ bond is non ionizable.

Answer: 0.22

Solution

$\alpha_{1}=\frac{\Lambda_{ m }^{ c }}{\Lambda_{ m }^{0}}=\frac{ y \times 10^{2}}{4 \times 10^{2}}=\frac{ y }{4}=\alpha$
On dilution conductivity increases three times
$\alpha_{2}=\frac{3 y \times 10^{2}}{4 \times 10^{2}}=3 \alpha_{1}=3 \alpha$
image
$K _{ a }=\frac{ C \alpha^{2}}{1-\alpha}$
Since temperature is constant $K _{ a }$ will be constant
$\frac{C_{1} \alpha_{1}^{2}}{1-\alpha_{1}}=\frac{C_{2} \alpha_{2}^{2}}{1-\alpha_{2}} $
$\frac{C \times \alpha^{2}}{1-\alpha}=\frac{\left(\frac{C}{20}\right)(3 \alpha)^{2}}{1-3 \alpha} $
$\frac{1}{1-\alpha}=\frac{9}{20}-\frac{1}{(1-3 \alpha)} $
$20-60 \alpha=9-9 \alpha ; $
$\alpha=\frac{11}{51}=0.2156 $
$\alpha=0.22$

Answer: 0.88

Solution

On dilution conductivity increases three times
Since temperature is constant $K _{ a }$ will be constant
$
\frac{C_{1} a_{1}^{2}}{1-a_{1}}=\frac{C_{2} a_{2}^{2}}{1-a_{2}}
$
$
\begin{array}{l}
\Rightarrow \frac{C \times a^{2}}{1-a}=\frac{\left(\frac{C}{20}(3 a)^{2}\right)}{(1-3 a)} \\
\Rightarrow \frac{1}{1-a}=\frac{9}{20(1-3 a)} \\
\Rightarrow 20-60 a=9-9 a \\
\Rightarrow a=\frac{11}{51}=0.2156 \\
\Rightarrow a=0.22
\end{array}
$
$
a=\frac{y}{4} ; y=4 a=4 \times 0.22=0.88
$
From above question we found the value of $a$.

Answer: 3.57

Solution

$Sn + 2HCl \rightarrow SnCl_2 + H_2$
image
Moles of $Sn =\frac{ x }{119}$
Moles of nitrobenzene $=\frac{ x }{119} \times \frac{1}{3}$
Moles of anilium chloride $=\frac{x}{119} \times \frac{1}{3}$
Moles of nitrobenzene $=\frac{x}{357}$
$\frac{ y }{123}=\frac{ x }{357}$ ... (1)
Moles of anilium chloride $=\frac{x}{357}$ ... (2)
$\frac{1.29}{129}=\frac{x}{357}$
$x=3.57$

Answer: 1.23

Solution

$Sn + 2HCl \rightarrow SnCl_2 + H_2$
image
Moles of $Sn =\frac{ x }{119}$
Moles of nitrobenzene $=\frac{ x }{119} \times \frac{1}{3}$
Moles of anilium chloride $=\frac{x}{119} \times \frac{1}{3}$
Moles of nitrobenzene $=\frac{x}{357}$
$\frac{ y }{123}=\frac{ x }{357}$ ... (1)
Moles of anilium chloride $=\frac{x}{357}$ ... (2)
$y =1.225 \cong 1.23$

A

Initiation step is exothermic with $\Delta H ^{\circ}=-58 \,kcal \,mol ^{-1}$.

B

Propagation step involving ${ }^{\circ} CH _{3}$ formation is exothermic with $\Delta H ^{\circ}=-2\, kcal\, mol ^{-1}$.

C

Propagation step involving $CH _{3} Cl$ formation is endothermic with $\Delta H ^{\circ}=+27\, kcal\, mol ^{-1}$.

D

The reaction is exothermic with $\Delta H ^{\circ}=-25\, kcal\, mol ^{-1}$.

Solution

$CH _{4}+ Cl _{2} \xrightarrow{\text { light }} CH _{3} Cl + HCl$ this reaction is obtained from given reaction.
$CH _{3}- H \longrightarrow CH _{3}^{\odot}+ H ^{\circ} \ldots(1)$
$Cl - Cl \longrightarrow Cl ^{\circ}+ Cl ^{\circ} $...(2)
$CH _{3}- Cl \longrightarrow CH _{3}{ }^{\circ}+ Cl ^{\circ}$ ...(3)
$H - Cl \longrightarrow H ^{\circ}+ Cl ^{\circ}$ ...(4)
$(1)+(2)-(3)-(4)$
Hence $\Delta H =105+58-85-103=-25 \,KCal / mole$

A

$\left[ Fe ( NO )_{2}\left( SO _{4}\right)_{2}\right]^{2-}$

B

$\left[ Fe ( NO )_{2}\left( H _{2} O \right)_{4}\right]^{3+}$

C

$\left[ Fe ( NO )_{4}\left( SO _{4}\right)_{2}\right]$

D

$\left[ Fe ( NO )\left( H _{2} O \right)_{5}\right]^{2+}$

Solution

$FeSO _{4}+ NaNO _{3}+ H _{2} SO _{4} \longrightarrow \left[ Fe \left( H _{2} O \right)_{5} NO \right]^{+2}+ SO _{4}^{-2}$

Answer: 10

Solution

$1^{\text {st }}$ process is adiabatic since entropy is constant.
$W _{1}=\Delta U$
$\Delta U =450\, R -2250 \, R =-1800\, R $
$ W _{1}=-1800 \, R$ .... (1)
In $2^{\text {nd }}$ process internal energy is constant it means it is a isothermal process.
$W _{2} =-2.303 \, n RT \log \frac{ V _{3}}{ V _{2}} $ ... (2)
$=- nRT \ln \frac{ V _{3}}{ V _{2}}$ ... (3)
Given, $n =1$ mole, here temperature is unknown
$U = nC _{ V } T $ for process $II$
$450 \,R =1 \times \frac{5}{2} RT$
$ T =\frac{450 \times 2}{5}=180\, K$
Equation (1) = equation (2)
$W _{1}= W _{2}$
$-1800 \,R =-1 \times R \times 180 \ln \frac{ V _{3}}{ V _{2}}$
$\ln \frac{ V _{3}}{ V _{2}}=\frac{1800}{180}=10$

Answer: 30

Solution

$\lambda=\frac{ h }{ m (\Delta V )}$
$330 \times 10^{-9}=\frac{6.6 \times 10^{-34}}{\left(\frac{4 \times 10^{-3}}{6 \times 10^{23}}\right) \times \Delta V }$
$\Delta V =\frac{6.6 \times 6 \times 10^{23} \times 10^{-34}}{4 \times 10^{-3} \times 330 \times 10^{-9}}$
$=0.30 \,m / s$
$=0.30 \times 100\, cm / s$
$=30 \,cm / s$

Answer: 6

Solution

$2 ClO _{2}+2 O _{3} \longrightarrow Cl _{2} O _{6}+2 O _{2}$
Average oxidization state of $Cl$ atom is $+6$

JEE Advanced Mathematics Question Paper with Solution JEE Advanced 2021 Paper 2

A

$\cos P \geq 1-\frac{ p ^{2}}{2 qr }$

B

$\cos R \geq\left(\frac{q-r}{p+q}\right) \cos P+\left(\frac{p-r}{p+q}\right) \cos Q$

C

$\frac{q+r}{p} < 2 \frac{\sqrt{\sin Q \sin R}}{\sin P}$

D

If $p < q$ and $p < r$, then $\cos Q >\frac{ p }{ r }$ and $\cos R >\frac{ p }{ q }$

Solution

(A) $\cos P =\frac{ q ^{2}+ r ^{2}- p ^{2}}{2 qr }, q ^{2}+ r ^{2} \geq 2 qr$,
by A.M. $\geq$ G.M
$\Rightarrow \cos P \geq 1-\frac{ p ^{2}}{2 qr }$
(B) By triangle inequality $q+p>r$
by projection formula
$r \cos P+p \cos R+q \cos R+r \cos Q>p \cos Q+q \cos P $
$\Rightarrow \cos R>\frac{(q-r)}{(p+q)} \cos P+\frac{(p-r)}{(p+q)} \cos Q$
So inequality is true (equality does not hold)
(C) By AM. $\geq$ GM.
$q+r \geq 2 \sqrt{q r} $
$\frac{q+r}{p} \geq \frac{2 \sqrt{q r}}{p}$
$\frac{\sin P}{p}=\frac{\sin Q}{q}=\frac{\sin R}{r} $ by sine rule
$\frac{q+r}{p} \geq \frac{2 \sqrt{\sin Q \sin R}}{\sin P}$
(D) If $\cos Q > \frac{p}{r} \Rightarrow r \cos Q>p$ ... (i)
$\cos R>\frac{p}{q} \Rightarrow q \cos R>p \ldots$ (ii)
Add (i) and (ii)
$r \cos Q+q \cos R>2 P \Rightarrow p>2 p$
$\Rightarrow p <0$, false

A

The equation $f ( x )-3 \cos 3 x =0$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$

B

The equation $f ( x )-3 \sin 3 x =-\frac{6}{\pi}$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$

C

$\displaystyle\lim _{x \rightarrow 0} \frac{x \int\limits_{0}^{x} f(t) d t}{1-e^{x^{2}}}=-1$

D

$\displaystyle\lim _{x \rightarrow 0} \frac{\sin x \int\limits_{0}^{x} f(t) d t}{x^{2}}=-1$

Solution

(A) Let $g(x) = f(x) - 3\cos\,3x$
$\int\limits_{0}^{\pi / 3} g(x) d x=\int\limits_{0}^{\pi / 3}(f(x)-3 \cos\, 3 x) d x$
$=\int\limits_{0}^{\pi / 3} f(x) d x-\int\limits_{0}^{\pi / 3} 3 \cos \,3 x \,d x=0 $
$\Rightarrow g(x)=0 $ has at least one solution in $[0, \pi / 3]$
(B) Let $h ( x )= f ( x )-3 \sin\, 3 x +6 / \pi$
$\int\limits_{0}^{\pi / 3} h(x)=\int\limits_{0}^{\pi / 3}\left(f(x)-3 \sin \,3 x+\frac{6}{\pi}\right) d x=0$
$\Rightarrow h(x)=0$ has at least one solution in $[0, \pi / 3]$
(C) $\displaystyle\lim _{x \rightarrow 0} \frac{\int\limits_{0}^{x} f(t) d t}{x}=\displaystyle\lim _{x \rightarrow 0} \frac{f(x)}{1}=f(0)=1$
$\Rightarrow \displaystyle\lim _{x \rightarrow 0} \frac{x \int\limits_{0}^{x} f(t) d t}{x^{2}\left(\frac{1-e^{x^{2}}}{x^{2}}\right)}=\displaystyle\lim _{x \rightarrow 0} \frac{-\int\limits_{0}^{x} f(t)}{x} \cdot \frac{x^{2}}{\left(e^{x^{2}}-1\right)}=-1$
(D) $\displaystyle\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{\int\limits_{0}^{x} f(t)}{x}=1$

A

$f(x)=\frac{x^{2}}{2} e^{-x}+\left(e-\frac{1}{2}\right) e^{-x}$

B

$f(x)=-\frac{x^{2}}{2} e^{-x}+\left(e+\frac{1}{2}\right) e^{-x}$

C

$f(x)=\frac{e^{x}}{2}\left(x-\frac{1}{2}\right)+\left(e-\frac{e^{2}}{4}\right) e^{-x}$

D

$f(x)=\frac{e^{x}}{2}\left(\frac{1}{2}-x\right)+\left(e+\frac{e^{2}}{4}\right) e^{-x}$

Solution

$\frac{d y}{d x}+\alpha y=x e^{\beta x}$
$d\left(e^{\alpha x} \cdot y\right) x e^{\alpha x} \cdot e^{\beta x}$
$d\left(e^{\alpha x} \cdot y\right)=x e^{(\alpha+\beta) x}$ ... (i)
Case-I : $\alpha+\beta \neq 0$
$d \left( e ^{\alpha x} \cdot y \right)= xe ^{(\alpha+\beta) x}$
$e ^{\alpha x} \cdot y =\frac{ xe ^{(\alpha+\beta) x}}{(\alpha+\beta)}-\frac{ e ^{(\alpha+\beta) x}}{(\alpha+\beta)^{2}}+ C$
$y =\frac{ xe ^{\beta x}}{(\alpha+\beta)}-\frac{ e ^{\beta x}}{(\alpha+\beta)^{2}}+ Ce ^{-\alpha x}$
$\alpha=1, \beta=1 \Rightarrow y =\frac{ xe ^{x}}{2}-\frac{ e ^{x}}{4}+ Ce ^{- x }$
as $y (1)=1 \Rightarrow C = e \left(1-\frac{ e }{4}\right)$
$y ( x )=\frac{x e ^{x}}{2}-\frac{ e ^{x}}{4}+\left( e -\frac{ e ^{2}}{4}\right) e ^{- x }$
Case-II : $\alpha+\beta=0$
$\Rightarrow \frac{d y}{d x}-\beta y=x e^{\beta x}$
$d\left(e^{-\beta x} y\right)=x$
$e^{-\beta x} \cdot y=\frac{x^{2}}{2}+C$
$y=\frac{e^{\beta x} x^{2}}{2}+C e^{\beta x}$
$y(1)=1$
$\Rightarrow C=\left(1-\frac{e}{2}\right) \frac{1}{e} $
$\Rightarrow y=e^{\beta x} \cdot \frac{x^{2}}{2}+\left(1-\frac{e}{2}\right) \frac{1}{e} \cdot e^{\beta x}$
Take $\beta=-1$
$ \Rightarrow y=\frac{x^{2}}{2} e^{-x}+\left(1-\frac{e}{2}\right) e^{-x}$

A

Projection of $\overrightarrow{ OC }$ on $\overrightarrow{ OA }$ is $-\frac{3}{2}$

B

Area of the triangle $OAB$ is $\frac{9}{2}$

C

Area of the triangle $ABC$ is $\frac{9}{2}$

D

The acute angle between the diagonals of the parallelogram with adjacent sides $\overrightarrow{ OA }$ and $\overrightarrow{ OC }$ is $\frac{\pi}{3}$

Solution

image
$\overrightarrow{ OA } \cdot \overrightarrow{ OB }=0 \Rightarrow \overrightarrow{ OA } \perp \overrightarrow{ OB }$
$\overrightarrow{ OC }=\frac{1}{2}((1-2 \lambda) \hat{ i }+(-2-2 \lambda) \hat{ j }+(2-\lambda) \hat{ k })$
$|\overrightarrow{ OB } \times \overrightarrow{ OC }|=\frac{9|\lambda|}{2}=\frac{9}{2} $
$\Rightarrow \lambda=\pm 1, $ as $ \lambda>0, \lambda=1 $
$\overrightarrow{ OC }=\frac{\overrightarrow{ OB }-\overrightarrow{ OA }}{2}$
(A) Projection $\overrightarrow{ OC }$ on $\overrightarrow{ OA }$
$\overrightarrow{ OC } \cdot \widehat{ OA }=-\frac{3}{2}$
(B) Area of $\triangle OAB =9 / 2$
(C) Area of $\triangle ABC =9 / 2$
(D) $\overrightarrow{ OA }+\overrightarrow{ OC }=\frac{3 \hat{i}+3 \hat{x}}{2}$,
$ \overrightarrow{ OA }-\overrightarrow{ OC }=\frac{5 \hat{i}+8 \hat{j}+\hat{k}}{2}$
$(\overrightarrow{ OA }+\overrightarrow{ OC })(\overrightarrow{ OA }-\overrightarrow{ OC })=|\overrightarrow{ OA }+\overrightarrow{ OC }||\overrightarrow{ OA }-\overrightarrow{ OC }| \cos \theta $
$\cos \theta=\frac{1}{\sqrt{5}}$

A

The triangle $PFQ$ is a right-angled triangle

B

The triangle $QPQ '$ is a right-angle triangle

C

The distance between $P$ and $F$ is $5 \sqrt{2}$

D

$F$ lies on the line joining $Q$ and $Q'$

Solution

image
$ E = y ^{2}-8 x =0 $
$ a =2$
Let $ Q \left(2 t _{1}^{2}, 4 t _{1}\right), Q '\left(2 t _{2}^{2}, 4 t _{2}\right)$
$ t _{1} t _{2}=-1, t _{1}+ t _{2}=2 $
$ t _{1}=1+\sqrt{2}, t _{2}=1-\sqrt{2}$
(A) ( slope of $PF$)( slope of $FQ)=-1$
$\Rightarrow \angle PFQ =\frac{\pi}{2}$
(B) ( slope of $PQ')($ slope of $PQ )=-1$
$\angle QPQ'=\frac{\pi}{2}$
(C) $PF =4 \sqrt{2}$
(D) slope of $Q' F =$ slope of $FQ$
$\Rightarrow Q , F , Q'$ are collinear

Answer: 1.5

Solution

Let the equation of circle $(x-r)^{2}+y^{2}=r^{2}$
Equation of parabola $y^{2}=4-x$
Solving them
$(x-r)^{2}+4-x=r^{2} $
$\Rightarrow x^{2}-x(2 r+1)+4=0$
Since circle and parabola meet tangentially hence
$(2 r+1)^{2}-16=0 $
$\Rightarrow 2 r+1=4 $
$\Rightarrow r=3 / 2 $ and $ x^{2}-4 x+4=0$
$(x-2)^{2}=0 $
$\Rightarrow \alpha=2, r=3 / 2=1.5$

Answer: 2

Solution

Let the equation of circle $(x-r)^{2}+y^{2}=r^{2}$
Equation of parabola $y^{2}=4-x$
Solving them
$(x-r)^{2}+4-x=r^{2} $
$\Rightarrow x^{2}-x(2 r+1)+4=0$
Since circle and parabola meet tangentially hence
$(2 r+1)^{2}-16=0 $
$\Rightarrow 2 r+1=4 $
$\Rightarrow r=3 / 2 $ and $ x^{2}-4 x+4=0$
$(x-2)^{2}=0 $
$\Rightarrow \alpha=2, r=3 / 2=1.5$

Answer: 2

Solution

$g _{1}:\left[\frac{\pi}{8}, \frac{3 \pi}{8}\right] \rightarrow R , i =1,2, f :\left[\frac{\pi}{ r }, \frac{3 \pi}{ r }\right] \rightarrow R$
$g _{1}=1, g _{2}=|4 x -\pi|, f ( x )=\sin ^{2} x$
$S _{1}=\int\limits_{\pi / 8}^{3 / 8} f ( x ) \cdot g _{1}( x ) d x$
$S _{1}=\int\limits_{\pi / 8}^{3 \pi / 8} \sin ^{2} x dx =\int\limits_{\pi / 8}^{3 \pi / 8} \sin ^{2}\left(\frac{\pi}{2}- x \right) dx $
$\Rightarrow 2 S _{1}=\int\limits_{\pi / 8}^{3 \pi / 8} 1 dx$
$\Rightarrow S _{1}=\frac{1}{2}\left(\frac{3 \pi}{8}-\frac{\pi}{8}\right)=\frac{\pi}{8} $
$\Rightarrow \frac{16 S _{1}}{\pi}=2$

Answer: 1.5

Solution

$S _{2}=\int\limits_{\pi / 8}^{3 \pi / 8} \sin ^{2} x |4 x -\pi| dx $
$=\int\limits_{\pi / 8}^{3 \pi / 8} \sin ^{2}\left(\frac{\pi}{2}- x \right)\left|4\left(\frac{\pi}{2}- x \right)-\pi\right| dx$
$=\int\limits_{\pi / 8}^{3 \pi / 8} \cos ^{2} x |4 x -\pi| dx$
$\Rightarrow 2 S _{2}=\int\limits_{\pi / 8}^{3 \pi / 8}|4 x -\pi| dx $
$=2 \int\limits_{\pi / 8}^{\pi / 4}(\pi-4 x ) dx$
$S _{2}=\left.\left(\pi x -2 x ^{2}\right)\right|_{\pi / 8} ^{\pi / 4}$
$=\pi\left(\frac{\pi}{4}-\frac{\pi}{8}\right)-2\left(\frac{\pi^{2}}{16}-\frac{\pi^{2}}{64}\right)$
$S _{2}=\frac{4 \pi^{2}}{8}-\frac{3 \pi^{2}}{32}=\frac{\pi^{2}}{32}$
$=\frac{48 S _{2}}{\pi^{2}}=\frac{48}{\pi^{2}} \times \frac{\pi^{2}}{32}=\frac{3}{2}$
$\frac{48 S _{2}}{\pi^{2}}=1.5$

A

$k+2 l=22$

B

$2 k +1=26$

C

$2 k +3 l =34$

D

$3 k +2 l =40$

Solution

image
$C _{1} \rightarrow(0,0), r =1$
$C _{2} \rightarrow(1,0), r =1 / 2$
$C _{3} \rightarrow(3 / 2,0), r =1 / 4$
$\vdots$
$C_{n}\left(2\left(1-\frac{1}{2^{n-1}}\right), 0\right), r=\frac{1}{2^{n-1}}$
$\Rightarrow 2\left(1-\frac{1}{2^{n-1}}\right)+\frac{1}{2^{n-1}} < r$
$ 2-\frac{1}{2^{n-1}} < r$
$\Rightarrow 2-\frac{1}{2^{n-1}} < \frac{1025}{513}$
$\Rightarrow \frac{1}{2^{n-1}}>\frac{1}{513}$
$\Rightarrow 2^{n-1} < 513 $
$\Rightarrow n-1 \leq 9$
$\Rightarrow n \leq 10 \Rightarrow k=10$
Also no two by $C _{1}, C _{3}, C _{5}, C _{7}, C _{9}$ intersect each other.
And no two of $C _{2}, C _{4}, C _{6}, C _{8}, C _{10}$ intersect each other
For both, we get $1=5$
$\Rightarrow 3 k +2 l =40$

A

198

B

199

C

200

D

201

Solution

image
$\sqrt{2} S_{n-1}+a_{n} < r$
$\Rightarrow \sqrt{2}\left(2\left(1-\frac{1}{2^{n-1}}\right)\right)+\frac{1}{2^{n-1}} < \left(\frac{2^{199}-1}{2^{198}}\right) \sqrt{2}$
$\Rightarrow \sqrt{2}\left(1-\frac{1}{2^{n-1}}\right)+\frac{1}{2^{n}} < \left(1-\frac{1}{2^{199}}\right) \sqrt{2}$
$\Rightarrow \frac{1}{(\sqrt{2})^{2 n}}-\frac{1}{(\sqrt{2})^{2 n-3}} < \frac{-1}{(\sqrt{2})^{397}}$
$\Rightarrow \frac{2 \sqrt{2}-1}{(\sqrt{2})^{2 n}}>\frac{1}{(\sqrt{2})^{397}}$
$\Rightarrow (\sqrt{2})^{2 n-397} < 2 \sqrt{2}-1$
$\Rightarrow 2 n-397 \leq 1 \Rightarrow n \leq 199$

A

$f(\sqrt{\ln 3})+g(\sqrt{\ln 3})=\frac{1}{3}$

B

For every $x > 1$, there exists and $\alpha \in(1, x)$ such that $\psi_{1}(x)=1+\alpha x$

C

For every $x > 0$, there exists a $\beta \in(0, x)$ such that $\psi_{2}(x)=2 x\left(\psi_{1}(\beta)-1\right)$

D

$f$ is an increasing function on the interval $\left[0, \frac{3}{2}\right]$

Solution

$\psi_{2}( x )= x ^{2}-2 x -2 e ^{- x }+2, x \geq 0$
$\psi_{2}^{\prime}( x )=2 x -2+2 e ^{- x }=2\left( x + e ^{- x }-1\right) $
$\psi_{2}^{\prime}(\beta)=2\left(\psi_{1}(\beta)-1\right)$
Since $\psi_{2}(x)$ is a continuous and differentiable function $\forall x \in[0, x]$
$\psi_{2}(0)=0, \psi_{2}(x)=x^{2}-2 x-2 e^{-x}+2$
Hence according to LMVT there exist at least one $\beta \in(0, x)$ such that
$\left(\frac{\psi_{2}( x )-\psi_{2}(0)}{ x }\right)=\psi_{2}^{\prime}(\beta)$
$=\frac{\psi_{2}( x )}{ x }=2\left(\psi_{1}(\beta)-1\right)$
$=\psi_{2}( x )=2 x \left(\psi_{1}(\beta)-1\right)$

A

$\psi_{1}( x ) \leq 1$, for all $x >0$

B

$\psi_{2}( x ) \leq 0$, for all $x >0$

C

$f(x) \geq 1-e^{-x^{2}}-\frac{2}{3} x^{3}+\frac{2}{5} x^{5}$, for all $x \in\left(0, \frac{1}{2}\right)$

D

$g(x) \leq \frac{2}{3} x^{3}-\frac{2}{5} x^{5}+\frac{1}{7} x^{7}$, for all $x \in\left(0, \frac{1}{2}\right)$

Solution

$\psi^{\prime}{ }_{1}( x )=1- e ^{- x }>0$
$\psi_{2}( x )=( x -1)^{2}+1-2 e ^{- x }>0$ for $x =1$
$\because e ^{- t }=1- t +\frac{ t ^{2}}{2}-\frac{ t ^{3}}{3}+\ldots$
$ \sqrt{ t } e ^{- t }=\sqrt{ t }- t ^{3 / 2}+\frac{1}{2} t ^{5 / 2} \ldots$
So, $ \sqrt{ t } e ^{- t }<\sqrt{ t }- t ^{3 / 2}+\frac{1}{2} t ^{5 / 2}$ for $t \in(0,1)$
$ \int\limits_{0}^{ x ^{2}} \sqrt{ t } e ^{- t } dt < \int\limits_{0}^{ x ^{2}}\left(\sqrt{ t }- t ^{3 / 2}+\frac{1}{2} t ^{5 / 2}\right) dt$
$=\frac{2}{3} x ^{3}-\frac{2}{5} x ^{5}+\frac{1}{7} x ^{7}$

Answer: 214

Solution

Let $A =\{1,2,3, \ldots ., 2000\}$
Let $E _{1}=3 m , 1 \leq m \leq 666, m \in N$
$ E _{2}=7 k , 1 \leq k \leq 285, k \in N$
$= n \left( E _{1} \cup E _{2}\right)=666+285-95=856$
$= P \left( E _{1} \cup E _{2}\right)=856 / 2000$
$=500 \beta=856 / 4=214$

Answer: 4

Solution

$M ( P , Q )$ is mid-point of $PQ$
$M \left( P , Q'\right)$ is mid-point of $PQ ^{\prime}$
In a $\triangle PQQ'$ since $M ( P , Q ) \& M \left( P , Q '\right)$ are mid-point
of $PQ \& PQ'$ hence line joining M(P,Q), M(P,Q') is
parallel to $QQ'$ and half of it.
$\Rightarrow \max$ distance $=\frac{1}{2} Q Q'=\frac{1}{2}(8)=4$

Answer: 182

Solution

$ I=\int\limits_{0}^{10}\left[\sqrt{\frac{10 x}{x+1}}\right] d x$
$\left[\sqrt{\frac{10 x}{x+1}}\right]=n $
$\Rightarrow \frac{n^{2}}{10-n^{2}} \leq x < \frac{(n+1)^{2}}{10-(n+1)^{2}}$ where $n \in I$
For $n=0,0 \leq x < 1 / 9$
$n=1 ; 1 / 9 \leq x < 2 / 3 $
$ n=2 ; 2 / 3 \leq x < 9, n=3, x \geq 9$
$ I=\int\limits_{0}^{1 / 9} 0 \cdot d x+\int\limits_{1 / 9}^{2 / 3} 1 \cdot d x+\int\limits_{2 / 3}^{9} 2 \cdot d x+\int\limits_{9}^{10} 3 \cdot d x $
$=\left(\frac{2}{3}-\frac{1}{9}\right)+2\left(9-\frac{2}{3}\right)+3(10-9)$
$=\frac{182}{9}=9 I=182$