JEE Main Question Paper with Solution 2023 January 31st Shift 1 - Morning

JEE Main Physics Question Paper with Solution 2023 January 31st Shift 1 - Morning

A

$8.8 \times 10^{-5} J$

B

$7.92 \times 10^{-4} J$

C

$7.92 \times 10^{-6} J$

D

$9.68 \times 10^{-4} J$

Solution

$ 1000 \times \frac{4 \pi}{3}(1)^3=\frac{4 \pi}{3} R^3 $
$R=10 \,mm$
$ T \times 1000 \times 4 \pi\left(10^{-3}\right)^2- T \times 4 \pi\left(10 \times 10^{-3}\right)^2=\Delta E$
$ \Delta E =4 \times \pi \times 7 \times 10^{-2}[1000-100] \times 10^{-6} $
$\Delta E =7.92 \times 10^{-4} J$

A

$4800 \, km$

B

$640 \, km$

C

$2560\, km$

D

$5260\, km$

Solution

$ \frac{ GM }{ R ^2}\left[1-\frac{ d }{ R }\right]=\frac{4 \times GM }{(4 R )^2}$
$ 1-\frac{ d }{ R }=\frac{1}{4} \Rightarrow \frac{ d }{ R }=\frac{3}{4} \Rightarrow d \frac{3}{4} R $
$ d =4800\, km $

A

$\frac{100 m v}{t}$

B

$200 m v t$

C

$\frac{200 m v}{t}$

D

$\frac{m v}{100 t}$

Solution

$P _{ i }= Nm \cup \hat{ i } \,\,\,\, \vec{ P }_{ f }=- Nm v \hat{ i }$
$N$ is Number of balls strikes with wall
$ N =100$
$ \Delta \vec{ P }=\vec{ P }_{ f }-\vec{ P }_{ i }=-2 Nm v \hat{ i }$
$=-200 Nm \hat{\hat{i}} $
$\vec{ F }_{\text {Total }}=\frac{\Delta \vec{ P }}{\Delta t }=-\frac{200 mvt }{ t } $
$ |\vec{ F }|=\frac{200 mv }{ t }$

A

$4.5\, J$

B

$-4.5 \,J$

C

zero

D

$6 \,J$

Solution

As $\Delta q =0$
$ \Delta u =- W $
$ W =\int PdV$
$ \Delta u =- W =30 \times 10^3 \times 150 \times 10^{-6}$
$ =4500 \times 10^{-3}$
$=4.5\, J $

A

$\gamma \alpha T ^{\circ}$

B

$\gamma \alpha \frac{1}{T}$

C

$\gamma \alpha T$

D

$\gamma \alpha \frac{1}{\sqrt{T}}$

Solution

$\gamma$ is independent of temperature

A

neutron is an uncharged particle

B

neutron has larger rest mass than proton

C

neutron is a composite particle made of a proton and an electron

D

proton is a charged particle

Solution

As neutron has more rest mass than proton it will require energy to decay proton into neutron. Option 4

A

Both will reach the earth's surface simultaneously.

B

Insulating ball will reach the earth's surface earlier than the metal ball

C

Metal ball will reach the earth's surface earlier than the insulating ball

D

Time taken by them to reach the earth's surface will be independent of the properties of their materials

Solution

When metal is passing through magnetic field, eddy current will produce and it will oppose the motion, so it will take more time

A

$R X_L \quad X_C$

B

$\frac{R}{\sqrt{X_L X_C}}$

C

$\frac{R}{X_L X_C}$

D

$R \frac{X_L}{X_C}$

Solution

All three have same dimension therefore $\frac{R}{\sqrt{X_L X_C}}$ is dimensionless.

A

B Only

B

A and B Only

C

A, D and E Only

D

A Only

Solution

Carrier wave frequency
$V _{ C }=\frac{100 \pi}{2 \pi}=500 \,Hz$
Modulating wave frequency
$ V _{ m }=\frac{4 \pi}{2 \pi}=2\, Hz$
$\therefore V _{ C }- V _{ m }, V _{ c }, V _{ c }+ V _{ m }$
$=498\, Hz , 500\, Hz , 502 \,Hz$

A

$4 \,J$

B

$1\, J$

C

$2\, J$

D

ZeIO

Solution

$ u=-M B \cos \theta $
$ W=\Delta u $
$ W=-M B \cos 180^{\circ}\left(-m B \cos 0^{\circ}\right) $
$ W=2 M B=2 \times 5 \times 0.4=4\, J$

A

Micro waves

B

Gamma rays

C

Radio waves

D

Ultraviolet rays

Solution

$ \text { Energy of one photon }=\frac{\text { Power }}{\text { Photon frequency }} $
$ E=h v=\frac{15 \times 10^3}{10^{16}} $
$ v=\frac{15 \times 10^{-13}}{6 \times 10^{-34}}=2.5 \times 10^{21}$
So gamma Rays. Option 3

A

$18.75\, J$

B

$37.5\, J$

C

$9.75 \,J$

D

$12.5\, J$

Solution

$u _{\max }=\frac{1}{2} m \omega^2 A ^2=25 J$
$KE$ at $\frac{ A }{2}=\frac{1}{2} m v_1^2=\frac{1}{2} m \omega^2\left(A^2-\frac{A^2}{4}\right)$
$KE =\frac{1}{2} m \omega^2 \frac{3 A ^2}{4}=\frac{3}{4}\left(\frac{1}{2} m ^2 A ^2\right) $
$KE =\frac{3}{4} \times 25=18.75\, J$

A

$800 N$

B

$600 N$

C

$200 \sqrt{3} N$

D

$800 \sqrt{2} N$

Solution

$ N = mg + F \sin 30^{\circ} $
$ =700+200 \times \frac{1}{2}=800$ newton.

A

$\frac{2 u }{ g }$

B

$\frac{ u }{2 g }$

C

$\frac{ u }{ g }$

D

$\frac{\sqrt{3} u}{g}$

Solution

$ u \cos \theta=\frac{\sqrt{3} u }{2} $
$\Rightarrow \cos \theta=\frac{\sqrt{3}}{2}$
$\Rightarrow \theta=30^{\circ} $
$ T =\frac{2 u \sin 30^{\circ}}{ g }=\frac{ u }{ g }$

A

$n _{ e }$ decreases, resistance increases

B

Both $n _{ e }$ and resistance increase

C

$n _{ e }$ increases, resistance decreases

D

Both $n_e$ and resistance decrease

Solution

As temperature increases, more electron excite to conduction band and hence conductivity increases, therefore resistance decreases.

Answer: 20

Solution

image
Keff $= K + K$ as both springs are in use in parallel
$=2 k $
$=2 \times 2=4 N / m $
$m =490 \,gm $
$ =0.49 \,kg$
$T =2 \pi \sqrt{\frac{ m }{ Keff }}=2 \pi \sqrt{\frac{0.49 kg }{4}} $
$ =2 \pi \sqrt{\frac{49}{400}}=2 \pi \frac{7}{20}=\frac{7 \pi}{10}$
No. of oscillation in the $14 \pi$ is
$N =\frac{\text { time }}{ T }=\frac{14 \pi}{7 \pi / 10}=20$

Answer: 10

Solution

$ \frac{1}{2} mv ^2+\frac{1}{2} I \omega^2=7 \times 10^{-3}$
$ \frac{1}{2} mv ^2+\frac{1}{2}\left(\frac{2}{5} MR ^2\right)\left(\frac{ V }{ R }\right)^2=7 \times 10^{-3} $
$ \frac{1}{2} MV ^2\left[1+\frac{2}{5}\right]=7 \times 10^{-3} $
$ \frac{1}{2}(1)\left( V ^2\right)\left(\frac{7}{5}\right)=7 \times 10^{-3}$
$ V ^2=10^{-2} $
$ V =10^{-1}=0.1\, m / s =10 \,cm / s$

Answer: 640

Solution

Flux $ =\vec{ E } \cdot \vec{ A } $
$ =4000(0 \cdot 2)^2 \frac{ V }{ m } \cdot(0 \cdot 2)^2 m ^2$
$ =4000 \times 16 \times 10^{-4} Vm $
$ =640 \,Vcm $

Answer: 5

Solution

$V =\frac{ C }{\mu} \Rightarrow \mu=\frac{ C }{ V }=\frac{ C }{0.2 C } $
$ \mu=5 $
$ \mu=\sqrt{\epsilon_{ r } \mu_{ r }}$
$ \Rightarrow \epsilon_{ r }=\frac{\mu^2}{\mu_{ r }} $
$ \therefore \frac{\epsilon_{ r }}{\mu}=\frac{\mu}{\mu_{ r }}=5$

Answer: 3

Solution

image
time to cross the River width $\omega=1000 \,m$
$\text { is }=\frac{1 km }{4 km / h }$
Drift $x=V m / g \times t$
Where $Vm / g$ is velocity of River w.r. to ground.
$ x = Vm / g \times \frac{1}{4}=750 m =\frac{3}{4} km$
$ Vm / g =3 \,km / hr$

Answer: 27

Solution

$ \frac{1}{\lambda}= Rz ^2\left[\frac{1}{ n _1^2}-\frac{1}{ n _2^2}\right]$
$\frac{1}{\lambda_1}= Rz ^2\left[\frac{1}{1^2}-\frac{1}{3^2}\right]=\frac{8}{9} Rz ^2 $.....(1)
$ \frac{1}{\lambda_2}= Rz ^2\left[\frac{1}{1^2}-\frac{1}{2^2}\right]=\frac{3}{4} Rz ^2$......(2)
$1 / 2 \Rightarrow \frac{\lambda_2}{\lambda_1}=\frac{8}{9} \times \frac{4}{3}=\frac{32}{27} $
$\frac{\lambda_1}{\lambda_2}=\frac{27}{32}$
$=27$

Answer: 60

Solution

If $\Delta \ell$ is decease in length of rod due to decease in temperature
image
$\Delta \ell=\ell \alpha \Delta T $
$ \alpha=2 \times 10^{-5} K ^{-1}, \Delta T =(210-160) $
$ =50 K $
$ \Delta \ell=1 \times 2 \times 10^{-5} \times 50=10^{-3} m $
$\text { Young Modulus }= Y =\frac{ F / A }{\Delta \ell / \ell} A =3 \times 10^{-6} m ^2 $
$2 \times 10^{11}=\frac{ Mg / 3 \times 10^{-6}}{10^{-3} / 1} $
$Mg =2 \times 10^{11} \times 3 \times 10^{-9}=6 \times 10^{-2}$
$ M=60\, kg $

Answer: 5

Solution

image
$i =\frac{2 \varepsilon}{5+2 r }\ldots$(1)
$ i=\frac{\varepsilon}{\frac{r}{2}+5} \ldots$ (2)
Equating (1) and (2)
$\frac{2 \varepsilon}{5+2 r }=\frac{\varepsilon}{\frac{ r }{2}+5} $
$\Rightarrow r +10=5+2 r$
$r =5$

JEE Main Chemistry Question Paper with Solution 2023 January 31st Shift 1 - Morning

A

$n =1$ to $n =3$

B

$n =1$ to $n =2$

C

$n =2$ to $n =1$

D

$n =3$ to $n =4$

Solution

$He ^{+}$ion :
$\frac{1}{\lambda( H )}= R (1)^2\left[\frac{1}{ n _1^2}-\frac{1}{ n _2^2}\right] $
$ \frac{1}{\lambda\left( He ^{+}\right)}= R (2)^2\left[\frac{1}{2^2}-\frac{1}{4^2}\right]$
Given $\lambda( H )=\lambda\left( He ^{+}\right)$
$ R (1)^2\left[\frac{1}{ n _1^2}-\frac{1}{ n _2^2}\right]= R (4)\left[\frac{1}{2^2}-\frac{1}{4^2}\right] $
$ \frac{1}{ n _1^2}-\frac{1}{ n _2^2}=\frac{1}{1^2}-\frac{1}{2^2}$
On comparing $n _1=1 \& n _2=2$

A

$Br _2$, alc $\cdot KOH , NaNH _2, Na \left( Liq NH _3\right)$

B

$Br _2$, alc $\cdot KOH , NaNH _2, H _2$ Lindlar Catalyst

C

$Br _2$, aq $\cdot KOH , NaNH _2, H _2$ Lindlar Catalyst

D

$Br _2, aq \cdot KOH , NaNH _2, Na \left( Liq NH _3\right)$

A

$OH ^{-}$is formed at cathode

B

$Cl _2$ is formed at cathode

C

$O _2$ is formed at cathode

D

$H _2$ is formed at anode

Solution

Electrolysis of brine solution
$NaCl ( aq .) \longrightarrow Na _{( aq )}^{+}+ Cl _{\text {(aq) }}^{+}$
At anode $: 2 Cl _{\text {(aq.) }}^{+} \longrightarrow \underset{\text { (Major) }}{ Cl _2( g )+2 e ^{-}}$
$2 H _2 O _{(\ell)} \longrightarrow \underset{\text { Minor }}{ O _{2( g )}}+4 H _{( aq )}^{+}+4 e ^{-}$
At Cathode : $2 H _2 O _{(\ell)}+2 e ^{-} \longrightarrow H _{2( g )} \uparrow+2 OH _{( aq )}^{-}$
$2 Na ^{+}+2 OH ^{-} \longrightarrow 2 NaOH$

A

$4 f ^3$

B

$4 f^4 6 s^2$

C

$4 f ^2 6 s ^2$

D

$4 f ^4$

Solution

$ Nd (60)=[ Xe ] 4 f ^4 5 d ^0 6 s ^2 $
$ Nd ^{2+}=[ Xe ] 4 f ^4 5 d ^0 5 s ^0$

A

$X = CuI _2 \,\,\,Y = Na _2 S _2 O _3$

B

$X = CuI _2 \,\,\, Y = Na _2 S _4 O _6$

C

$X = Cu _2 I _2 \,\,\,Y = Na _2 S _4 O _6$

D

$X = Cu _2 I _2 \,\,\, Y = Na _2 S _4 O _5$

Solution

$Cu ^{2+}+2 KI \longrightarrow \underset{\text { Unstable }}{ CuI _2} \downarrow+2 K ^{+}$
$I ^{-}$is strong R.A it reduces $Cu ^{2+}$ to $Cu ^{+}$
$2 CuI _2 \longrightarrow \underset{\text { (White)'X' }}{ Cu _2 I _2 \downarrow}+ I _2$
$KI + I _2 \longrightarrow K ^{+} I _3^{-} \text {(Brown solution) }$
$I _3^{-} \rightleftharpoons I _2+ I ^{-}$
$KI _3+ Na _2 S _2 O _3 \rightarrow KI + \underset{(Y)}{Na _2 S _4 O _6}$

A

$X = ClNO _3, Y = Cl _2, Z = NO _2$

B

$X = ClONO _2, Y = HOCl , Z = HNO _3$

C

$X = ClONO _2, Y = HOCl , Z = NO _2$

D

$X = ClNO _2, Y = HCl , Z = HNO _3$

Solution

$Cl \dot{ O }+ NO _2 \longrightarrow \underset{(x)}{ClO NO _2} \xrightarrow{ + H _2 O } \underset{( Y )}{ HOCl }+\underset{\text { (Z) }}{ HNO _3}$

A

B

C

D

A

optically active and adds one mole of bromine

B

optically active alcohol and is neutral

C

racemic mixture and gives a gas with saturated $NaHCO _3$ solution

D

racemic mixture and is neutral

A

$Na _2 S +4 H _2 O _2 \rightarrow Na _2 SO _4+4 H _2 O$

B

$Mn ^{2+}+2 H _2 O _2 \rightarrow MnO _2+2 H _2 O$

C

$2 Fe ^{2+}+2 H ^{+}+ H _2 O _2 \rightarrow 2 Fe ^{3+}+2 H _2 O$

D

$2 NaOCl + H _2 O _2 \rightarrow 2 NaCl + H _2 O + O _2$

A

d

B

c

C

b

D

a

Solution

Non-Polar tail towards non-polar solvent

A

B, D and E only

B

$C , D$ and $E$ only

C

$A$ and $C$ only

D

B, D and C only

Solution

Methods involved in concentration of one are
(i) Hydraulic Washing
(ii) Froth Flotation
(iii) Magnetic Separation
(iv) Leaching

A

Alitane

B

Saccharin

C

Aspartame

D

Sucralose

Solution

Sweetness value order wrt cane sugar
Alitame > Sucralose > Saccharin > Aspartame

A

B

C

D

Solution

Only in option (2) $\alpha$-Amino acid is given all the other options are not $\alpha$-Amino acids.

A

A-(iii), B-(iv), C-(ii), D-(i)

B

A-(i), B-(iii), C-(ii), D-(iv)

C

A-(ii), B-(iv), C-(i), D-(iii)

D

A-(ii), B-(iii), C-(iv), D-(i)

Solution

A. $H _2 O / CH _2 Cl _2 \rightarrow$ ii, $CH _2 Cl _2> H _2 O$ (density) so they can be separated by differential solvent extraction.
image
C. Kerosene / Naphthalene $\rightarrow$ iv. Fractional distillation.
Due to different B.P. of kerosene and Naphthalene it can be separated by fractional distillation.
D. $C _6 H _{12} O _6 / NaCl \rightarrow$ i. Crystallization.
$NaCl$ (ionic compound) can be crystallized.

A

$X =\left[ Co \left( H _2 O \right)_4 Cl _2\right]^{+}, Y =\left[ CoCl _4\right]^{2-}, Z =$ Tetrahedral

B

$X =\left[ Co \left( H _2 O \right)_6\right]^{2+}, Y =\left[ CoCl _6\right]^{3-}, Z =$ Octahedral

C

$X =\left[ Co \left( H _2 O \right)_6\right]^{2+}, Y =\left[ CoCl _4\right]^{2-}, Z =$ Tetrahedral

D

$X =\left[ Co \left( H _2 O \right)_6\right]^{3+}, Y =\left[ CoCl _6\right]^{3-}, Z =$ Octahedral

A

$Ca ^{2+}< K ^{+}< Cl ^{-}< S ^{2-}$

B

$S ^{2-}< Cl ^{-}< Ca ^{2+}< K ^{+}$

C

$K ^{+}< S ^{2-}< Ca ^{2+}< Cl ^{-}$

D

$Cl ^{-}< Ca ^{2+}< K ^{+}< S ^{2-}$

Solution

In isoelectronic species size $\propto \frac{1}{Z}$

A

$V _2 O _3> V _2 O _5> V _2 O _4$

B

$V _2 O _4> V _2 O _3> V _2 O _5$

C

$V _2 O _3> V _2 O _4> V _2 O _5$

D

$V _2 O _5> V _2 O _4> V _2 O _3$

Solution

With increase in $\%$ of oxygen acidic nature of oxide of an element increase and basic nature decreases

Answer: 1

Solution

$SO _{2( g )}+\frac{1}{2} O _{2( g )} \rightleftharpoons SO _{3( g )} $
$ K _{ p }=2 \times 10^{12} \text { at } 300 K $
$ K _{ p }= K _{ C } \times( RT )^{\Delta n _{ g }} $
$ 2 \times 10^{12}= K _{ c } \times(0.082 \times 300)^{-1 / 2} $
$ K _{ C }=9.92 \times 10^{12} $
$ K _{ C }=0.992 \times 10^{13}$
$= 1$

Answer: 2520

Solution

$\log \frac{ K _{300}}{ K _{200}}=\frac{ E _{ a }}{2.3 \times 8.314}\left(\frac{1}{ T _1}-\frac{1}{ T _2}\right) $
$ \log \frac{0.05}{0.03}=\frac{ Ea }{2.305 \times 8.314} \times\left[\frac{1}{200}-\frac{1}{300}\right] $
$E _{ a }=2519.88 J \Rightarrow E _{ a }=2520 J $

Answer: 62250

Solution

$= CRT $
$ \frac{400 Pa }{10^5}=\frac{\frac{2.5 g }{ M _{ o }}}{250 / 1000 L } \times 0.83 \frac{ L - bar }{ K \cdot mol } \times 300\, K $
$M _{ o }=62250$

Answer: 44

Solution

weight of $C$ in $0.792\, gm\, CO _2$
$=\frac{12}{44} \times 0.792=0.216$
$ \% $ of $ C$ in compound $=\frac{0.216}{0.492} \times 100 $
$ =43.90 \%$
$=44$

Answer: 4

Solution

$ Zn +2 HCl \rightarrow ZnCl _2+ H _2 \uparrow$
$\text { Moles of } Zn \text { used }=\frac{11.5}{65.4}=\text { Moles of } H _2 \text { evolved } $
$ \text { Volume of } H _2=\frac{11.5}{65.4} \times 22.7 L =3.99 L$
$=4$

Answer: 6

Solution

$ \Delta G ^0=- RT \ell nK $
$ - nFE _{\text {cell }}^o=- RT \times 2.303\left(\log _{10} K \right) $
$ \frac{ E _{\text {Cell }}^0}{0.06} \times n =\log K $....(1)
$ Pd ^{+2} \text { (aq.) }+\not \not e ^{-} \rightleftharpoons Pd ( s ), E _{\text {cat,red }}^n=0.83$
$Pd ( s )+4 Cl ^{-}( aq .) \rightleftharpoons PdCl _4^{2-},( aq )+2 e ^{-}, E _{\text {Anode, oxiad }}^n=0.65$
Net Reaction $\rightarrow Pd ^{2+}$ (aq.) $+4 Cl ^{-}$(aq.) $\rightleftharpoons PdCl _4^{2-}$ (aq.)
$ E _{\text {cell }}^{ o }= E _{\text {cat,red}^n }^{ \circ }- E _{\text {Anode,oxid}^n }^{ \circ } $
$ E _{\text {cell }}^{ o }=0.83-0.65$
$ E _{\text {cell }}^{ o }=0.18$...(2)
Also $n =2$.....(3)
Using equation (1), (2) & (3) $\log K =6$

JEE Main Mathematics Question Paper with Solution 2023 January 31st Shift 1 - Morning

A

$\left(\frac{5}{37}, \frac{2}{5}\right]$

B

$\left(\frac{5}{26}, \frac{2}{5}\right]-\left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}$

C

$\left(\frac{5}{26}, \frac{2}{5}\right]$

D

$\left(\frac{5}{37}, \frac{2}{5}\right]-\left\{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}\right\}$

A

$\frac{2}{7}$

B

$\frac{3}{7}$

C

$\frac{5}{7}$

D

$\frac{5}{6}$

Solution

$ \frac{{ }^5 C _2+{ }^6 C _2}{{ }^2 C _2+{ }^3 C _2+{ }^4 C _2+{ }^5 C _2+{ }^8 C _2}=\frac{10+15}{1+3+6+10+15} $
$ =\frac{25}{35}=\frac{5}{7}$

A

$\frac{9}{2}$

B

3

C

7

D

14

Solution

$ a, a r, a r^2, a r^3(a, r>0) $
$ a^4 r^6=1296 $
$ a^2 r^3=36 $
$ a=\frac{6}{r^{3 / 2}} $
$ a+a r+a r^2+a r^3=126 $
$ \frac{1}{r^{3 / 2}}+\frac{r}{r^{3 / 2}}+\frac{r^2}{r^{3 / 2}}+\frac{r^3}{r^{3 / 2}}=\frac{126}{6}=21 $
$ \left(r^{-3 / 2}+r^{3 / 2}\right)+\left(r^{1 / 2}+r^{-1 / 2}\right)=21 $
$ r^{1 / 2}+r^{-1 / 2}=A$
$ r^{-3 / 2}+r^{3 / 2}+3 A=A^3$
$ A ^3-3 A + A =21 $
$ A ^3-2 A =21 $
$ A =3 $
$ \sqrt{r}+\frac{1}{\sqrt{r}}=3 $
$ r +1=3 \sqrt{r} $
$ r ^2+2 r +1=9 r $
$ r ^2-7 r +1=0$

A

$2 y^{\prime}+\sqrt{3} \pi^2 y=0$

B

$\sqrt{2} y^{\prime}-3 \pi^2 y=0$

C

$2 y^{\prime}+3 \pi^2 y=0$

D

$y^{\prime}+3 \pi^2 y=0$

Solution

$ y =\sin ^3(\pi / 3 \operatorname{cosg}(x))$
$ g(x)=\frac{\pi}{3 \sqrt{2}}\left(-4 x^3+5 x^2+1\right)^{3 / 2} $
$ g(1)=2 \pi / 3 $
$ y^{\prime}=3 \sin ^2\left(\frac{\pi}{3} \cos g(x)\right) \times \cos \left(\frac{\pi}{3} \cos g(x)\right) $$\times \frac{\pi}{3}(-\sin g(x)) g^{\prime}(x)$
$ y^{\prime}(1)=3 \sin ^2\left(-\frac{\pi}{6}\right) \cdot \cos \left(\frac{\pi}{6}\right) \cdot \frac{\pi}{3}\left(-\sin \frac{2 \pi}{3}\right) g^{\prime}(1) $
$ g^{\prime}(x)=\frac{\pi}{3 \sqrt{2}}\left(-4 x^3+5 x^2+1\right)^{1 / 2}\left(-12 x^2+10 x\right)$
$ g^{\prime}(1)=\frac{\pi}{2 \sqrt{2}}(\sqrt{2})(-2)=-\pi $
$y^{\prime}(1)=\frac{\not 3}{4} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\pi}{\not 3 }\left(\frac{-\sqrt{3}}{2}\right)(-\pi)=\frac{3 \pi^2}{16}$
$ y(1)=\sin ^3(\pi / 3 \cos 2 \pi / 3)=-\frac{1}{8} $
$ 2 y^{\prime}(1)+3 \pi^2 y(1)=0$

A

2

B

3

C

1

D

0

Solution

$ \sqrt{(x-1)(x-3)}+\sqrt{(x-3)(x+3)} $
$ =\sqrt{4\left(x-\frac{12}{4}\right)\left(x-\frac{2}{4}\right)} $
$ \Rightarrow \sqrt{x-3}=0 \Rightarrow x=3 \text { which is in domain }$
$ \text { or }$
$ \sqrt{x-1}+\sqrt{x+3}=\sqrt{4 x-2}$
$ 2 \sqrt{(x-1)(x+3)}=2 x-4$
$x^2+2 x-3=x^2-4 x+4 $
$ 6 x=7 $
$ x=7 / 6$(rejected)

A

both (S1) and (S2) are correct

B

only (S2) is correct

C

only ( S 1) is correct

D

both ( S 1) and (S2) are wrong

Solution

$p$ $q$ $p \Rightarrow q$ $\sim q$ $p \wedge \sim q$ $(p \Rightarrow q) \vee(p \wedge \sim q)$
T T T F F T
T F F T T T
F T T F F T
F F T T F T

$\sim p$ $\sim q$ $\sim p \Rightarrow \sim q$ $\sim p \vee q$ $((\sim p) \Rightarrow(\sim q)) \wedge(\sim p) \vee q)$
F F T T T
F T T F F
T F F T F
T T T T T

A

$\alpha+2 y=24$

B

$2 \alpha+\gamma=7$

C

$\alpha-2 \gamma=19$

D

$2 \alpha-\gamma=9$

Solution

$\vec{ b _1} \times \vec{ b _2}=\begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ -2 & 0 & 1 \\ 1 & 1 & -1\end{vmatrix}=-\hat{ i }-\hat{ j }-2 \hat{ k }$

$ \vec{ a _2}-\vec{ a _1}=6 \hat{ i }+(\lambda-1) \hat{ j }+(-\lambda-4) \hat{ k } $
$ 2 \sqrt{6}=\left|\frac{-6-\lambda+1+2 \lambda+8}{\sqrt{1+1+4}}\right|$
$|\lambda+3|=12 \Rightarrow \lambda=9,-15 $
$ \alpha=-2 k +5, \gamma= k -\lambda \text { where } k \in R $
$ \Rightarrow \alpha+2 \gamma=5-2 \lambda=-13,35$

A

both (A) and (B) are correct

B

only $( A )$ is correct

C

only (B) is correct

D

neither $( A )$ nor $(B)$ is correct

Solution

$ |\vec{a}+\vec{b}+\vec{c}|^2=|\vec{a}+\vec{b}-\vec{c}|^2$
$ 2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a}=2 \vec{a} \cdot \vec{b}-2 \vec{b} \cdot \vec{c}-2 \vec{c} \cdot \vec{a}$
$4 \vec{a} \cdot \vec{c}=0$
$B$ is incorrect
$ |\vec{ a }+\lambda \vec{ c }|^2 \geq|\vec{ a }|^2 $
$ \lambda^2 c ^2 \geq 0$
True $\forall \lambda \in R$ (A) is correct.

A

$P_{50}(\alpha)-\beta$

B

$-\left(\beta+P_{50}(\alpha)\right)$

C

$\beta+P_{50}(a)$

D

$\beta-P_{50}(\alpha)$

Solution

$ \int\limits_0^\alpha \frac{t^{50}-1+1}{1-t}=-\int\limits_0^\alpha\left(1+ t +\ldots . .+ t ^{49}\right)+\int\limits_0^\alpha \frac{1}{1- t } dt $
$ =-\left(\frac{\alpha^{50}}{50}+\frac{\alpha^{49}}{49}+\ldots . .+\frac{\alpha^1}{1}\right)+\left(\frac{\ln (1- f )}{-1}\right)_0^\alpha$
$ =- P _{50}(\alpha)-\ln (1-\alpha)$
$ =- P _{50}(\alpha)-\beta$

A

2050

B

4094

C

6144

D

4097

Solution

$A^2=\begin{bmatrix}1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3\end{bmatrix}\begin{bmatrix}1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3\end{bmatrix}$
$=\begin{bmatrix}1 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & 12 & -3\end{bmatrix}= A$
$ \Rightarrow A ^3= A ^4=\ldots \ldots= A $
$ ( A + I ){ }^{11}={ }^{11} C _0 A ^{11}+{ }^{11} C _1 A ^{10}+\ldots . \cdot{ }^{11} C _{10} A +{ }^{11} C _{11} I $
$ =\left({ }^{11} C _0+{ }^{11} C _1+\ldots .{ }^{11} C _{10}\right) A + I$
$ =\left(2^{11}-1\right) A + I =2047 A + I $
$ \therefore $ Sum of diagonal elements $=2047(1+4-3)+3 $
$ =4094+3=4097$

A

the curve $C_1$ lies inside $C_2$

B

the curves $C_1$ and $C_2$ intersect at 4 points

C

the curve $C_2$ lies inside $C_1$

D

the curves $C_1$ and $C_2$ intersect at 2 points

Solution

Let $w = z +\frac{1}{ z }=4 e ^{ i \theta}+\frac{1}{4} e ^{-i \theta}$
$\Rightarrow w =\frac{17}{4} \cos \theta+ i \frac{15}{4} \sin \theta$
So locus of w is ellipse $\frac{x^2}{\left(\frac{17}{4}\right)^2}+\frac{y^2}{\left(\frac{15}{4}\right)^2}=1$
Locus of $z$ is circle $x ^2+ y ^2=16$
So intersect at 4 points

A

$16-5 \pi$

B

16

C

0

D

$\pi$

Solution

$ \cos ^{-1} \frac{4}{5}=\tan ^{-1} \frac{3}{4} $
$ \therefore \sin ^{-1} \frac{\alpha}{17}=\tan ^{-1} \frac{77}{36}-\tan ^{-1} \frac{3}{4}=\tan ^{-1}\left(\frac{\frac{77}{36}-\frac{3}{4}}{1+\frac{77}{36} \cdot \frac{3}{4}}\right) $
$ \sin ^{-1} \frac{\alpha}{17}=\tan ^{-1} \frac{8}{15}=\sin ^{-1} \frac{8}{17}$
$ \Rightarrow \frac{\alpha}{17}=\frac{8}{17} \Rightarrow \alpha=8$
$\therefore \sin ^{-1}(\sin 8)+\cos ^{-1}(\cos 8)$
$ =3 \pi-8+8-2 \pi $
$ =\pi$

A

If $\alpha=\beta$ and $\alpha \neq 7$, then the system has a unique solution

B

There is a unique point $(\alpha, \beta)$ on the line $x+2 y+18=0$ for which the system has infinitely many solutions

C

For every point $(\alpha, \beta) \neq(7,7)$ on the line $x-2 y+7=0$, the system has infinitely many solutions

D

If $\alpha=\beta=7$, then the system has no solution

Solution

By equation 1 and 3
$y+2 z=8 $
$y=8-2 z $
And $x=-2+z$
Now putting in equation 2
$\alpha(z-2)+\beta(-2 z+8)+7 z=3 $
$ \Rightarrow(\alpha-2 \beta+7) z=2 \alpha-8 \beta+3$
So equations have unique solution if $\alpha-2 \beta+7 \neq 0$
And equations have no solution if $\alpha-2 \beta+7=0$ and $2 \alpha-8 \beta+3 \neq 0$
And equations have infinite solution if $\alpha-2 \beta+7=0$ and $2 \alpha-8 \beta+3=0$

A

transitive but neither reflexive nor symmetric

B

symmetric but neither reflexive nor transitive

C

symmetric and transitive but not reflexive

D

reflexive and symmetric but not transitive

Solution

$\text { (a, b) } R(c, d) \Rightarrow a d(b-c)=b c(a-d)$
Symmetric:
$(c, d) R(a, b) \Rightarrow c b(d-a)=d a(c-b) \Rightarrow$
Symmetric Reflexive:
(a, b) $R(a, b) \Rightarrow a b(b-a) \neq b a(a-b) \Rightarrow$
Not reflexive
Transitive: $(2,3) R (3,2)$ and $(3,2) R (5,30)$ but
$((2,3),(5,30)) \notin R \Rightarrow \text { Not transitive }$

A

$\frac{7}{2}-\sqrt{3}-\log _e \sqrt{3}$

B

$\frac{10}{3}-\sqrt{3}-\log _e \sqrt{3}$

C

$\frac{10}{3}-\sqrt{3}+\log _e \sqrt{3}$

D

$-2+3 \sqrt{3}+\log _e \sqrt{3}$

Solution

$ \int\limits_{\pi / 3}^{\pi / 2}\left(\frac{2+3 \sin x}{\sin x(1+\cos x)}\right) d x=2 \int\limits_{\pi / 3}^{\pi / 2} \frac{d x}{\sin x+\sin x \cos x}+3$
$ 3 \int\limits_{\pi / 3}^{\pi / 2} \frac{d x}{1+\cos x} $
$\int\limits_{\pi / 3}^{\pi / 2} \frac{d x}{1+\cos x}=\int\limits_{\pi / 3}^{\pi / 2} \frac{1-\cos x}{\sin ^2 x} d x $
$ =\int\limits_{\pi / 3}^{\pi / 2}\left(\text{cosec}^2 x-\cot x \text{cosec} x\right) d x$
$ =(\operatorname{cosec} x-\cot x) \int\limits_{\pi / 3}^{\pi / 2}=(1)-\left(\frac{2}{\sqrt{3}}-\frac{1}{\sqrt{3}}\right)=1-\frac{1}{\sqrt{3}} $
$ \int\limits_{\pi / 3}^{\pi / 2} \frac{d x}{\sin x(1+\cos x)}= $
$ \int \frac{d x}{(2 \tan x / 2)\left(1+1-\tan ^2 x / 2\right)}$
$ =\int \frac{\left(1+\tan ^2 x / 2\right) \sec ^2 x / 2 d x}{2 \tan x / 2}$
$ \tan x / 2= t $
$ \sec x / 2 \frac{1}{2} dx = dt$
$ \frac{1}{2} \int\left(\frac{1+ t ^2}{ t }\right) dt =\frac{1}{2}\left[\ln +\frac{ t }{2}^2\right]_{\frac{1}{\sqrt{3}}}^1 $
$ =\frac{1}{2}\left[\left(0+\frac{1}{2}\right)-\left(\ln \frac{1}{\sqrt{3}}+\frac{1}{6}\right)\right]=\left(\frac{1}{3}+\ln \sqrt{3}\right) \frac{1}{2} $
$ =\left(\frac{1}{6}+\frac{1}{2} \ln \sqrt{3}\right) $
$ 2\left(\frac{1}{6}+\frac{1}{2} \ln \sqrt{3}\right)+3\left(1-\frac{1}{\sqrt{3}}\right) $
$ =\frac{1}{3}+\ln \sqrt{3}+3-\sqrt{3}=\frac{10}{3}+\ln \sqrt{3}-\sqrt{3}$

A

$6: 1$

B

$3: 1$

C

$4: 1$

D

$1: 6$

Solution

$ \ell_1+\ell_2=20 \Rightarrow \frac{ d \ell_2}{ d \ell_1}=-1$
$ A _1=\left(\frac{\ell_1}{4}\right)^2 \text { and } A _2=\pi\left(\frac{\ell_2}{2 \pi}\right)^2$
Let $S =2 A _1+3 A _2=\frac{\ell_1^2}{8}+\frac{3 \ell_2^2}{4 \pi}$
$ \frac{ ds }{ d \ell}=0 \Rightarrow \frac{2 \ell_1}{8}+\frac{6 \ell_2}{4 \pi} \cdot \frac{ d \ell_2}{ d \ell_1}=0$
$\Rightarrow \frac{\ell_1}{4}=\frac{6 \ell_2}{4 \pi} \Rightarrow \frac{\pi \ell_1}{\ell_2}=6$

A

$\frac{\sqrt{3}}{4}$

B

$\frac{\sqrt{3}}{2}$

C

$\frac{1}{\sqrt{2}}$

D

$\frac{1}{2}$

Solution

Equation of normal is
$2 x \sec \theta-\text { by } \operatorname{cosec} \theta=4-b^2$
Distance from $(0,0)=\frac{4-b^2}{\sqrt{4 \sec ^2 \theta+b^2 \operatorname{cosec}^2 \theta}}$
Distance is maximum if
$4 \sec ^2 \theta+b^2 \operatorname{cosec}^2 \theta$ is minimum
$ \Rightarrow \tan ^2 \theta=\frac{b}{2} $
$\Rightarrow \frac{4-b^2}{\sqrt{4 \cdot \frac{b+2}{2}+b^2 \cdot \frac{b+2}{b}}}=1 $
$ \Rightarrow 4-b^2=b+2 \Rightarrow b=1 \Rightarrow e =\frac{\sqrt{3}}{2} $

A

19

B

17

C

1

D

34

Solution

Differentiate w.r.t. x
$ f^{\prime}(x)+\frac{f(x)}{x}=\frac{1}{2 \sqrt{x+1}} $
$ \text { I.F. }=e^{\int \frac{1}{x} d x}=e^{\ln x}=x $
$ x f(x)=\int \frac{x}{2 \sqrt{x+1}} d x$
$ x+1=t^2$
$ =\int \frac{t^2-1}{2 t} 2 t d t $
$ x f(x)=\frac{t^3}{3}-t+c$
$ x f(x)=\frac{(x+1)^{3 / 2}}{3}-\sqrt{x+1}+c$
Also putting $x=3$ in given equation $f(3)+0=\sqrt{4}$
$ f (3)=2 $
$ \Rightarrow C =8-\frac{8}{3}=\frac{16}{3} $
$ f ( x )=\frac{\frac{( x +1)^{3 / 2}}{3}-\sqrt{ x +1}+\frac{16}{3}}{ x } $
$ f (8)=\frac{9-3+\frac{16}{3}}{8}=\frac{34}{24}$
$ \Rightarrow 12 f (8)=17$

A

is an empty set

B

contains exactly one element

C

contains exactly two elements

D

is an infinite set

Solution

$ \left(x+\frac{1}{2}\right)^2=\left(y+\frac{1}{4}\right)$
$ y=\left(x^2+x\right) $
$ \tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^2+x+1}=\pi / 2$
$ 0 \leq x^2+x+1 \leq 1$
$x^2+x \leq 0 $....(1)
$ \text { Also } x^2+x \geq 0 $....(2)
$ \therefore x^2+x=0 \Rightarrow x=0,-1$
$S$ contains 2 element.

A

$2(2+\sqrt{2})$

B

$2(1+\sqrt{2})$

C

$4(1+\sqrt{2})$

D

$3+2 \sqrt{2}$

Solution

$C =(2,3), r =\sqrt{2} $
Centre of $G = A =2+4 \frac{1}{\sqrt{2}}, $
$ 3+\frac{4}{\sqrt{2}}=(2+2 \sqrt{2}, 3+2 \sqrt{2})$
$ A (2+2 \sqrt{2}, 3+2 \sqrt{2})$
$B (4+2 \sqrt{2}, 1+2 \sqrt{2})$
$ \frac{ x -(2+2 \sqrt{2})}{1}=\frac{ y -(3+2 \sqrt{2})}{-1}=2 $
$\therefore \text { area of trapezium: } $
$\frac{1}{2}(4+4 \sqrt{2}) 2=4(1+\sqrt{2})$

Answer: 2

Solution

$ T _{ r +1}={ }^{30} C _{ r }\left( x ^{2 / 3}\right)^{30- r }\left(\frac{2}{ x ^3}\right)^{ r } $
$ ={ }^{30} C _{ r } \cdot 2^{ r } \cdot x ^{\frac{60-11 r }{3}} $
$ \frac{60-11 r }{3}<0 \Rightarrow 11 r >60 \Rightarrow r >\frac{60}{11} \Rightarrow r =6$
$ T _7={ }^{30} C _6 \cdot 2^6 x ^{-2}$
We have also observed $\beta={ }^{30} C _6(2)^6$ is a natural number.
$\therefore \alpha=2$

Answer: 9

Solution

$ 5^{9 9}=5^4 .5^{95} $
$ =625\left[5^5\right]^{19} $
$ =625[3125]^{19} $
$ =625[3124+1]^{19} $
$ =625[11 k \times 19+1] $
$ =625 \times 11 k \times 19+625$
$ =11 k _1+616+9$
$ =11\left( k _2\right)+9 $
Remainder $=9$

Answer: 8

Solution

$2 a_5=a_5(\text { given }) $
$ 2\left(a_1+6 d\right)=a_1+4 d $
$ a_1+8 d=0 $....(1)
$ a_1+10 d=18 $...(2)
$ \text { By }(1) \text { and (2) we get } a_1=-72, d=9 $
$ a_{18}=a_1+17 d=-72+153=81 $
$ a_{10}=a_1+9 d=9 $
$ 12\left(\frac{\sqrt{a_{11}}-\sqrt{a_{10}}}{d}+\frac{\sqrt{a_{12}}-\sqrt{a_{11}}}{d}+\ldots \ldots \frac{\sqrt{a_{18}}-\sqrt{a_{17}}}{d}\right) $
$ 12\left(\frac{\sqrt{a_{18}}-\sqrt{a_{10}}}{d}\right)=\frac{12(9-3)}{9}=\frac{12 \times 6}{6}=8$

Answer: 5

Solution

$x_i$ $f_i$ $d_i = x_i - 5$ $f_i d_i ^2$ $f_id_i$
2 3 -3 27 -9
3 6 -2 24 -12
4 16 -1 16 -16
5 $\alpha$ 0 0 0
6 9 1 9 9
7 5 2 20 10
8 6 3 54 18
$ \sigma_x^2=\sigma_d^2=\frac{\sum f _{ i } d _{ i }{ }^2}{\sum f _{ i }}-\left(\frac{\sum f _{ i } d _{ i }}{\sum f _{ i }}\right)^2 $
$ =\frac{150}{45+\alpha}-0=3 $
$\Rightarrow 150=135+3 \alpha$
$ \Rightarrow 3 \alpha=15 \Rightarrow \alpha=5$

Answer: 36

Solution

$ |\vec{a}|=\sqrt{14},|\vec{b}|=\sqrt{6} \quad|\vec{a} \times \vec{b}|=\sqrt{48} $
$ |\vec{a} \times \vec{b}|^2+|\vec{a} \cdot \vec{b}|^2=|\vec{a}|^2 \times|\vec{b}|^2$
$ \Rightarrow(\vec{a} \cdot \vec{b})^2=84-48=36$

Answer: 180

Solution

Any point on $L ((2 \lambda+1),(-\lambda-1),(\lambda+3))$
$ 2(2 \lambda+1)+(-\lambda-1)+3(\lambda+3)=16$
$6 \lambda+10=16 \Rightarrow \lambda=1 $
$ \therefore P =(3,-2,4)$
$DR$ of $QR =\langle 2 \lambda,-\lambda, \lambda+6\rangle$
$DR$ of $L =\langle 2,-1,1\rangle$
$4 \lambda+\lambda+\lambda+6=0 $
$ 6 \lambda+6=0 \Rightarrow \lambda=-1 $
$Q=(-1,0,2)$
image
$\overrightarrow{ QR } \times \overrightarrow{ QP }=\begin{vmatrix}\hat{ i } & \hat{ j } & \hat{ k } \\ 2 & -1 & -5 \\ 4 & -2 & 2\end{vmatrix}=-12 \hat{ i }-24 \hat{ j }$
$\alpha=\frac{1}{2} \times \sqrt{144+576} \Rightarrow \alpha^2=\frac{720}{4}=180$

Answer: 710

Solution

$1000-2799$
Divisible by 3
$1002+(n-1) 3=2799$
$n=600$
Divisible by 11
$ 1-2799 \rightarrow\left[\frac{2799}{11}\right]=[254]=254$
$ 1-999=\left[\frac{999}{11}\right]=90 $
$ 1000-2799=254-90=164$
Divisible by 33
$ 1-2799 \rightarrow\left[\frac{2799}{33}\right]=84 $
$ 1-999 \rightarrow\left[\frac{999}{33}\right]=30$
$ 1000-2799 \rightarrow 54$
$ \therefore n (3)+ n (11)- n (33) $
$ 600+164-54=710$

Answer: 72

Solution

image
$ 2 y - x =15 $
$ A =\int\limits_0^3\left(\frac{ x +15}{2}- x ^2\right) dx +\frac{1}{2} \times \frac{15}{2} \times 15 $
$ \frac{ x ^2}{4}+\frac{15 x }{2}-\left.\frac{ x ^3}{3}\right|_0 ^3+\frac{225}{4} $
$ =\frac{9}{4}+\frac{45}{2}-9+\frac{225}{4}=\frac{99-36+225}{4}$
$ =\frac{288}{4}=72$