Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
∫(1/ sin x cos x) dx is equal to
Q.
∫
s
i
n
x
c
o
s
x
1
dx is equal to
25392
202
KEAM
KEAM 2016
Integrals
Report Error
A
lo
g
∣
tan
x
∣
+
C
60%
B
lo
g
∣
sin
2
x
∣
+
C
11%
C
lo
g
∣
sec
x
∣
+
C
14%
D
lo
g
∣
cos
x
∣
+
C
10%
E
lo
g
∣
sin
x
∣
+
C
10%
Solution:
Let
I
=
∫
(
s
i
n
x
c
o
s
x
s
i
n
2
x
+
c
o
s
2
x
)
d
x
=
∫
(
s
i
n
x
c
o
s
x
s
i
n
2
x
+
s
i
n
x
c
o
s
x
c
o
s
2
x
d
x
)
=
∫
(
tan
x
+
cot
x
)
d
x
=
lo
g
sec
x
+
(
−
lo
g
cosec
x
)
+
C
=
lo
g
∣
∣
cosec
x
s
e
c
x
∣
∣
+
C
=
lo
g
∣
tan
x
∣
+
C