Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of (dy/dx) = (y/x)+ tan (y/x) is
Q. The solution of
d
x
d
y
=
x
y
+
tan
x
y
is
30557
181
WBJEE
WBJEE 2011
Differential Equations
Report Error
A
x = c sin (y/x)
B
x = c sin (xy)
C
y = c sin (y/x)
D
xy = c sin (x/y)
Solution:
Given,
d
x
d
y
=
x
y
+
tan
x
y
Put
y
=
vx
⇒
d
x
d
y
=
x
d
x
d
v
+
v
∴
x
d
x
d
v
+
v
=
v
+
tan
v
⇒
cot
v
d
v
=
x
1
d
x
On integrating both sides, we get
⇒
lo
g
c
+
lo
g
sin
v
=
lo
g
x
c
sin
v
=
x
⇒
x
=
c
sin
(
x
y
)