Q. Which one of the following is a tautology ?
Solution:
$\left(1\right)\,P\,\wedge \left(P\,\vee\,Q\right)=P$
$\left(2\right)\,P\,\vee \left(P\,\wedge\,Q\right)\equiv P$
$\left(3\right)\,Q \rightarrow \left(P\,\wedge\left(P \rightarrow Q\right)\right)$
$\equiv Q \rightarrow \left(P\,\wedge\left(\sim P\,\vee\,Q\right)\right)\equiv Q \rightarrow \left(P\,\wedge\,Q\right)$
$\equiv\left(\sim Q\right)\vee\left(P\,\wedge\,Q\right)\equiv\left(P\,\vee\left(\sim Q\right)\right)$
$\left(4\right)\,\left(P\,\wedge \left(P \rightarrow Q\right)\right) \rightarrow Q$
$\equiv\left(P\,\wedge \left(\sim P\,\vee\,Q\right)\right) \rightarrow Q\equiv \left(P\,\wedge\,Q \right) \rightarrow Q$
$\equiv\left(\left(\sim P\right)\vee\left(\sim Q\right)\right)\vee\,Q\equiv\left(\sim P\right)\vee\,t\equiv t$
Questions from JEE Main 2020
1. If $x=2sin\theta-sin2\theta$ and $y=2cos\theta-cos2\theta, \theta\,\epsilon\,\left[0, 2\pi\right], \frac{d^{2}y}{dx^{2}}$ at $\theta=\pi$ is :
Continuity and Differentiability
Questions from Mathematical Reasoning
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. If a and b are vectors such that $|a+b|=|a-b|$ then the angle between a and b is
KCET 2007
Vector Algebra
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
6. $\int\frac{\sin \frac{5x}{2}}{\sin \frac{x}{2}} dx $ is equal to :
(where $c$ is a constant of integration)
JEE Main 2019
Integrals
7. A particle is dropped under gravity from rest from a height $ h(g=9.8\,m/{{s}^{2}}) $ and it travels a distance $ \frac{9h}{25} $ in the last second the height $ h $ is:
Bihar CECE 2006
8. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
9. The value of $\int \frac{x^2+1}{x^2-1}dx$ is
KCET 2007
Integrals
10. The value of the integral $\int\frac{cos x}{sin x + cos x}dx$ is equal to
KEAM 2013
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023