Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of the integral ∫(cos x/sin x + cos x)dx is equal to
Q. The value of the integral
∫
s
in
x
+
cos
x
cos
x
d
x
is equal to
21787
201
KEAM
KEAM 2013
Integrals
Report Error
A
x
+
l
o
g
∣
s
in
x
+
cos
x
∣
+
C
9%
B
2
1
[
x
+
l
o
g
∣
∣
s
in
x
+
cos
x
∣
∣
]
+
C
57%
C
l
o
g
∣
s
in
x
+
cos
x
∣
+
C
15%
D
2
x
+
l
o
g
∣
∣
s
in
x
+
cos
x
∣
∣
+
C
9%
E
x
+
2
1
+
l
o
g
∣
∣
s
in
x
+
cos
x
∣
∣
+
C
9%
Solution:
Let
I
=
∫
s
i
n
x
+
c
o
s
x
c
o
s
x
d
x
=
2
1
∫
s
i
n
x
+
c
o
s
x
2
c
o
s
x
d
x
=
2
1
∫
(
s
i
n
x
+
c
o
s
x
)
(
s
i
n
x
+
c
o
s
x
)
+
(
c
o
s
x
−
s
i
n
x
)
d
x
=
2
1
∫
d
x
+
2
1
∫
s
i
n
x
+
c
o
s
x
c
o
s
x
−
s
i
n
x
⋅
d
x
=
2
1
x
+
2
1
lo
g
∣
sin
x
+
cos
x
∣
+
C
=
2
1
[
x
+
lo
g
∣
sin
x
+
cos
x
∣
]
+
C