Q.
What is the limiting value of the expression
$\frac{\{(n+1)(n+2) \ldots \ldots \ldots(2 n)\}^{\frac{1}{n}}}{n}$ when $n$ tends to infinity?
Integrals
Report Error
Solution:
Let $P =\frac{\{( n +1)( n +2) \ldots \ldots .(2 n )\}^{\frac{1}{ n }}}{ n }$
Then $\log P =\frac{1}{ n }[\log ( n +1)+\log ( n +2)+\ldots \ldots+\log 2 n ]-\log n$
$=\frac{1}{ n }[\{\log ( n +1)-\log n \}+\{\log ( n +2)-\log n \} +\ldots+\{\log 2 n -\log n \}]$
$=\frac{1}{ n }\left[\log \left(\frac{ n +1}{ n }\right)+\log \left(\frac{ n +2}{ n }\right)+\ldots . .+\log \left(\frac{ n + n }{ n }\right)\right]$
$=\frac{1}{ n }\left[\log \left(1+\frac{1}{ n }\right)+\log \left(1+\frac{2}{ n }\right)+\ldots \ldots .+\log \left(1+\frac{ n }{ n }\right)\right]$
$=\frac{1}{ n } \displaystyle\sum_{ r =1}^{ n } \log \left(1+\frac{ r }{ n }\right)=\int_\limits{0}^{1} \log (1+ x ) dx$
$=[ x \log (1+ x )]_{0}^{1}-\int_\limits{0}^{1} \frac{ x }{1+ x } dx$
[Integrating by parts taking 1 as second function]
$=[\log 2-0]-\int_\limits{0}^{1}\left[1-\frac{1}{1+ x }\right] dx$
$=\log 2-[x-\log (x+1)]_{0}^{1}=2 \log 2-1=\log 4-\log e$
$\therefore \log P =\log \frac{4}{ e } \Rightarrow P =\frac{4}{ e }$
Questions from Integrals
2. The value of the integral
$ \int\limits^2_{1}e^{x} \left(log_{e} \,x + \frac{x+1}{x}\right)dx$ is
WBJEE 2013
3. If $ f(x)=\int_{1}^{x}{\sqrt{4-{{t}^{2}}}}\,\,\,dt, $ then real roots of the equation $ x-f'(x)=0 $ are
J & K CET 2012
4. If $f\left(x\right) = \int\limits^{sin\,x}_{2x}cos\left(t^{3}\right)dt$, then $f'{x}$ is equal to
KEAM 2012
5. $\int\limits_{0}^{1} x e^{-5x} \, dx$ is equal to
KEAM 2011
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. If a and b are vectors such that $|a+b|=|a-b|$ then the angle between a and b is
KCET 2007
Vector Algebra
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
6. $\int\frac{\sin \frac{5x}{2}}{\sin \frac{x}{2}} dx $ is equal to :
(where $c$ is a constant of integration)
JEE Main 2019
Integrals
7. A particle is dropped under gravity from rest from a height $ h(g=9.8\,m/{{s}^{2}}) $ and it travels a distance $ \frac{9h}{25} $ in the last second the height $ h $ is:
Bihar CECE 2006
8. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
9. The value of $\int \frac{x^2+1}{x^2-1}dx$ is
KCET 2007
Integrals
10. The value of the integral $\int\frac{cos x}{sin x + cos x}dx$ is equal to
KEAM 2013
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023