Q.
The pdf of a random variable $X$ is $f\left(x\right)=3\left(1-2x^{2}\right)$, $0 < x < 1$
$=0\quad$ otherwise
The $P\left(\frac{1}{4} < X < \frac{1}{3}\right)=$ ...
Solution:
We have, p.d.f of a random variable
$X$ is $f(x)=3\left(1-2 x^{2}\right),0 < x < 1$
$=0$, otherwise
$\therefore P\left(\frac{1}{4} < X < \frac{1}{3}\right)=\int_\limits{1 / 4}^{1 / 3} f(x) d x$
$=\int_\limits{1 / 4}^{1 / 3} 3\left(1-2 x^{2}\right) d x$
$=3\left[x-\frac{2}{3} x^{3}\right]_{1 / 4}^{1 / 3}$
$=3\left[\left(\frac{1}{3}-\frac{2}{3}\left(\frac{1}{3}\right)^{3}\right)-\left(\frac{1}{4}-\frac{2}{3}\left(\frac{1}{4}\right)^{3}\right)\right]$
$=3\left[\left(\frac{1}{3}-\frac{1}{4}\right)-\frac{2}{3}\left(\frac{1}{3^{3}}-\frac{1}{4^{3}}\right)\right]$
$=3\left[\frac{1}{12}-\frac{2}{3} \times \frac{37}{1728}\right]$
$=3 \times \frac{179}{2592}$
$=\frac{179}{864}$
Questions from MHT CET 2019
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023