Here, f(0)=e2 and limx→0f(x)=limx→0(1+2x)1/x=e2[∵limx→0(1+λx)1/x=eλ]∴f(0)=limx→0f(x)=e2⇒f(x) is continuous at x=0 Option (b), Here, f(0)=−1 and limx→0f(x)=limx→0(sinx−cosx)=sin0−cos0=−1
<br/><br/><br/><br/><br/><br/>∴f(0)=limx→0f(x)=−1<br/><br/><br/>⇒f(x) is continuous at x=0 Option (c), Here, f(0)=−1<br/><br/><br/> and limx→0f(x)=limx→0e1/x+1e1/x−1=limx→01+e−1/x1−e−1/x=1<br/><br/><br/>∴f(0)=limx→0f(x)⇒f(x) is not continuous option (d)<br/><br/><br/><br/><br/><br/>
Here f(0)=1
and limx→0f(x)=limx→0sin3xe5x−e2x×3x3x =limx→03xe5x−e2x×limx→0sin3x3x <br/><br/>(1+1!5x+2!(5x)2+…)<br/>=limx→03x(1+1!2x+2!(2x)2+…)<br/>(∵limx→0sin3x3x=1)<br/>=limx→03x(1!3x+2!21x2+…)=1<br/>∴f(0)=limx→0f(x)=1<br/>⇒f(x) is continuous at x=0<br/><br/>