Q. Let $i=\sqrt{-1}$. If $\frac{(-1+i \sqrt{3})^{21}}{(1-i)^{24}}+\frac{(1+i \sqrt{3})^{21}}{(1+i)^{24}}=k$, and $n=[|k|]$ be the greatest integral part of $|k|$. Then $\sum_{j=0}^{n+5}(j+5)^{2}-\sum_{j=0}^{n+5}(j+5)$ is equal to.
Solution:
$K=\frac{1}{2^{9}}\left[\frac{\left(-\frac{1}{2}+\frac{ i \sqrt{3}}{2}\right)^{21}}{\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i \right)^{24}}+\frac{\left(\frac{1}{2}+\frac{ i \sqrt{3}}{2}\right)^{21}}{\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i \right)^{24}}\right]$
$K =\frac{1}{512}\left[\frac{\left( e ^{ i \frac{2 \pi}{3}}\right)^{21}}{\left( e ^{-\frac{ i \pi}{4}}\right)^{24}}+\frac{\left( e ^{\frac{ i \pi}{3}}\right)^{21}}{\left( e ^{\frac{ i \pi}{4}}\right)^{24}}\right]$
$K =\frac{1}{512}\left[ e ^{ i (14 \pi+6 \pi)}+ e ^{ i (7 \pi-6 \pi)}\right]$
$K =\frac{1}{512}\left[ e ^{20 \pi i }+ e ^{\pi i }\right]$
$K =\frac{1}{512}[1+(-1)]=0$
$n =[| k |]=0$
$\sum_\limits{ j =0}^{5}( j +5)^{2}-\sum_\limits{ j =0}^{5}( j +5)$
$\sum_\limits{ j =0}^{5}\left( j ^{2}+25+10 j - j -5\right)$
$\sum_\limits{ j =0}^{5}\left( j ^{2}+9 j +20\right)$
$\sum_\limits{j=0}^{5} j ^{2}+9 \sum_\limits{j=0}^{5} j +20 \sum_\limits{j=0}^{5} 1$
$\frac{5 \times 6 \times 11}{6}+9\left(\frac{5 \times 6}{2}\right)+20 \times 6$
$=55+135+120$
$=310$
Questions from JEE Main 2021
1. Let $a , b \in R$. If the mirror image of the point $P ( a$, 6,9) with respect to the line
$\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$ is $(20, b,-a-9),$ then $|a +b|$ is equal to:
Three Dimensional Geometry
2. The vector equation of the plane passing through the intersection of the planes $\vec{ r } .(\hat{ i }+\hat{ j }+\hat{ k })=1$ and $\vec{ r } .(\hat{ i }-2 \hat{ j })=-2,$ and the point (1,0,2) is :
Three Dimensional Geometry
Questions from Complex Numbers and Quadratic Equations
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023