4099
176
KCETKCET 2012Complex Numbers and Quadratic Equations
Report Error
Solution:
Let z=(x+iy)(1−2i) =x+iy−2xi−2i2y =x+iy−2xi+2y ⇒z=x+2y+i(y−2x) ∴zˉ=x+2y−i(y−2x)
According to the question, zˉ=1+i ⇒x+2y−i(y−2x)=1+i
On equating the real and imaginary parts from both sides, we get x+2y=1⇔2x+4y=2...(i)
and y−2x=−1...(ii)
On adding Eqs. (i) and (ii), we get 5y=1⇒y=51 ∴ From Eq. (i), we get 2x+4(51)=2 ⇒2x=2−54 ⇒2x=56 ⇒x=53
Taking z=x+iy=1−2i1−i×1+2i1+2i =1−4i21+2i−i−2i2 z=53+i=53+i51 ⇒z=53+i51, which is true.