Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If n ≥ 2 is a positive integer, then the sum of the series n+1 C2+2( 2 C2+ 3 C2+ 4 C2+ ldots .+ n C2) is:
Q. If
n
≥
2
is a positive integer, then the sum of the series
n
+
1
C
2
+
2
(
2
C
2
+
3
C
2
+
4
C
2
+
…
.
+
n
C
2
)
is:
4175
181
JEE Main
JEE Main 2021
Binomial Theorem
Report Error
A
6
n
(
n
−
1
)
(
2
n
+
1
)
15%
B
6
n
(
n
+
1
)
(
2
n
+
1
)
46%
C
6
n
(
2
n
+
1
)
(
3
n
+
1
)
38%
D
12
n
(
n
+
1
)
2
(
n
+
2
)
0%
Solution:
n
+
1
C
2
+
2
(
2
C
2
+
3
C
2
+
4
C
2
+
……
.
+
n
C
2
)
n
+
1
C
2
+
2
(
3
C
3
+
3
C
2
+
4
C
2
+
……
.
+
n
C
2
)
{
use
n
C
r
+
1
+
n
C
r
=
n
+
1
C
r
}
=
n
+
1
C
2
+
2
(
4
C
3
+
4
C
2
+
5
C
3
+
……
+
n
C
2
)
n
+
1
C
2
+
2
(
5
C
3
+
5
C
2
+
……
.
+
n
C
2
)
⋮
=
n
+
1
C
2
+
2
(
n
C
3
+
n
C
2
)
=
n
+
1
C
2
+
2
⋅
n
+
1
C
3
=
2
(
n
+
1
)
n
+
2
⋅
2.3
(
n
+
1
)
(
n
)
(
n
−
1
)
=
6
n
(
n
+
1
)
(
2
n
+
1
)