Q. If $\frac{1 + 3 \text{p}}{3} \text{,} \frac{1 - \text{p}}{4}$ and $\frac{1 - 2 \text{p}}{2}$ are probabilities of mutually exclusive events of a random experiment, then the range of $\text{p}$ is
Solution:
Since, the probability lies between $\text{0}$ and $\text{1} \text{.}$
$0 \leq \frac{1 + 3 \text{p}}{3} \leq 1 \text{,} \, 0 \leq \frac{1 - \text{p}}{4} \leq 1 \text{,} \, 0 \leq \frac{1 - 2 \text{p}}{2} \leq 1$
$\Rightarrow 0 \leq 1 + 3 \text{p} \leq 3 \text{,} \, 0 \leq 1 - \text{p} \leq 4 \text{,} \, 0 \leq 1 - 2 \text{p} \leq 2$
$\Rightarrow \, - \frac{1}{3} \leq \text{p} \leq \frac{2}{3} \text{,} - 3 \leq \text{p} \leq 1 \text{,} \, - \frac{1}{2} \leq \text{p} \leq \frac{1}{2} \, \ldots \left(\text{i}\right)$
Again, the events are mutually exclusive
$0 \leq \frac{1 + 3 \text{p}}{3} + \frac{1 - \text{p}}{4} + \frac{1 - 2p}{2} \leq 1$
$\Rightarrow 0 \leq 1 3 - 3 \text{p} \leq 1 2$
$\Rightarrow \frac{1}{3} \leq \text{p} \leq \frac{1 3}{3} \ldots \left(\text{ii}\right)$
From Eqs. (i) and (ii), we get
$\text{max} \left\{- \frac{1}{3} , - 3,\frac{- 1}{2},\frac{1}{3}\right\} \leq \text{p} \leq \text{min} \left\{\frac{2}{3},1,\frac{1}{2},\frac{1 3}{3}\right\}$
$\Rightarrow \frac{1}{3} \leq \text{p} \leq \frac{1}{2}$
Questions from NTA Abhyas 2020
Questions from Probability
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. If a and b are vectors such that $|a+b|=|a-b|$ then the angle between a and b is
KCET 2007
Vector Algebra
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
6. $\int\frac{\sin \frac{5x}{2}}{\sin \frac{x}{2}} dx $ is equal to :
(where $c$ is a constant of integration)
JEE Main 2019
Integrals
7. A particle is dropped under gravity from rest from a height $ h(g=9.8\,m/{{s}^{2}}) $ and it travels a distance $ \frac{9h}{25} $ in the last second the height $ h $ is:
Bihar CECE 2006
8. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
9. The value of $\int \frac{x^2+1}{x^2-1}dx$ is
KCET 2007
Integrals
10. The value of the integral $\int\frac{cos x}{sin x + cos x}dx$ is equal to
KEAM 2013
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023