Q. The points $A(3,2,0)$, $B(5,3,2)$ and $C(0,2,4)$ are the vertices of a triangle. Find the distance of the point $A$ from the point in which the bisector of $∠BAC$ meets $[BC]$.
Introduction to Three Dimensional Geometry
Report Error
Solution:
Let $D$ be the points at which bisector of $∠BAC$ meets $[BC]$, then $D$ divides $[BC]$ internally in the ratio $c : b$ where $c = |AB|$ and $b = |AC|$.
Now $c = \left|AB\right| = \sqrt{\left(5-3\right)^{2}+\left(3-2\right)^{2}+\left(2-0\right)^{2}} = 3$ units
and $b = \left|AC\right| = \sqrt{\left(0-3\right)^{2}+\left(2-2\right)^{2}+\left(4-0\right)^{2}}=\sqrt{25}=5$ units
$\therefore D$ divides $\left[BC\right]$ in the ratio $3 : 5$
Hence, $D \equiv \left(\frac{3\times0+5\times 5}{3+5}, \frac{3\times2+5\times3}{3+5}, \frac{3\times4+5\times2}{3+5}\right)$,
i.e., $D \equiv \left(\frac{25}{8}, \frac{21}{8}, \frac{22}{8}\right)$.
Now, $\left|AD\right|= \sqrt{\left(\frac{25}{8}-3\right)^{2}+\left(\frac{21}{8}-2\right)^{2}+\left(\frac{22}{8}-0\right)^{2}}$
$= \sqrt{\frac{1}{64}+\frac{25}{64}+\frac{484}{64}}$
$=\sqrt{\frac{510}{64}}=\frac{1}{8}\sqrt{510}$
Questions from Introduction to Three Dimensional Geometry
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023