Q. The intervals in which the function $f$ given by $f(x)=\frac{4 \,\sin\, x-2 x-x\, \cos\, x}{2+\cos \,x}$ is increasing in $x \in(0,2 \pi)$ is

Application of Derivatives Report Error

Solution:

$f(x)=\frac{4 \,\sin\, x-2 x-x\, \cos \,x}{2+\cos\, x}$
$=\frac{4\, \sin \,x}{2+\cos\, x}-x$
$\therefore f'(x)=\frac{4 \,\cos \,x(2+\cos\, x)-(-\sin\, x)(4 \\,sin \,x)}{(2+\cos\, x)^{2}}-1$
$=\frac{4+8 \,\cos \,x}{(2+\cos\, x)^{2}-1}$
$=\frac{\cos \,x(4-\cos \,x)}{(2+\cos\, x)^{2}}$
Now, $f'(x)=0 $ or $\cos \,x=0$
$($ As $\cos\, x \neq 4)$
or $x=\frac{\pi}{2}, \frac{3 \pi}{2} ; \cos\, x > 0$
for $x \in(0, \pi / 2) \cup(3 \pi / 2,2 \pi)$
and $\cos \,x < 0$ for $x \in(\pi / 2, \pi) \cup(\pi, 3 \pi / 2)$
Thus, $f ( x )$ is increasing for
$x \in(0, \pi / 2) \cup(3 \pi / 2,2 \pi)$

Questions from Application of Derivatives