Q.
Let f:R→R be a positive increasing function with x→∞limf(x)f(3x)=1
Then x→∞limf(x)f(2x)=
1916
186
AIEEEAIEEE 2010Application of Derivatives
Report Error
Solution:
f(x) is a positive increasing function. ∴0<f(x)<f(2x)<f(3x) ⇒0<1<f(x)f(2x)<f(x)f(3x) ⇒x→∞lim1≤x→∞limf(x)f(2x)≤x→∞limf(x)f(3x)
By Sandwich Theorem. ⇒x→∞limf(x)f(2x)=1