Q.
Let f(x) = max {$x^2, (1-x)^2, 2x(1-x)$}, where $0\le x\le1$.
Determine the area of the region bounded by the curves
y=f (x), X-axis, x = 0 and x = 1.
Solution:
We can draw the graph of $y=x^2$, $y=(1-x)^2$ and
y = 2 x (1 - x) in following figure
Now, to get the point of intersection of $y=x^2$ and y = 2x (1 - x), we get,
$x^2=2x(1-x) \Rightarrow 3x^2=2x$
$\Rightarrow $ x(3x-2)=0 $\Rightarrow $ x = 0, $\frac {2}{3}$
Similarly, we can find the coordinate of the points of
intersection of
$y=(1-x^2)$ and y = 2x (1 - x) are $x=\frac {1}{3}$ and x=1
From the figure, it is clear that,
$\Bigg \{ \begin{array}
\ (1 - x)^2, \\
2x ( 1 - x), \\
x^2, \\
\end{array} \begin{array}
\ if 0 \le x \le \frac {1}{3} \\
if \frac {1}{3} \le x \le \frac {2}{3} \\
if \frac {2}{3} \le x \le 1 \\
\end{array}$
$\therefore $ The required area
$A=\int\limits_0^1 f(x) dx$
$=\int\limits_0^{\frac{1}{3}} (1-x)^2 dx+\int\limits_{\frac{1}{3}}^{\frac{2}{3}} 2x(1-x) dx+\int\limits_{\frac{2}{3}}^{1} x^2 dx$
$=\Big[ -\frac {1}{3}(1-x)^3\Big]_0^\frac {1}{3}+\Big[ x^2-\frac {2x^3}{3}\Big]_{\frac {1}{3}}^{\frac {2}{3}}$ +$\Big[ \frac {1}{3}x^3\Big]_{\frac {2}{3}}^ {1}$
=$\Big[ -\frac {1}{3}\Big( \frac {2}{3}\Big)^3+\frac {1}{3}\Big]$+$\Big[ \Big( \frac {2}{3}\Big)^3+\frac {2}{3} \Big(\frac {2}{3}\Big)^{3}-\Big(\frac {1}{3}\Big)^{2}+\frac {2}{3} \Big(\frac {1}{3}\Big)^{3}\Big]$+$\Big[ {\frac {1}{3}}(1)-\frac {1}{3}\Big( \frac {2}{3}\Big)^3\Big]$
$=\frac {19}{81}+\frac {13}{81}+\frac {19}{81}=\frac {17}{27}$ sq unit

Questions from IIT JEE 1997
1. The determinant $\begin{vmatrix}xp+y&x&y\\ yp+z&y&z\\ 0&xp+y&yp+z\end{vmatrix} = 0 $ if
Determinants
4. The equation $\sqrt{x+1}-\sqrt{x-1}=\sqrt{4x-1}$ has
Complex Numbers and Quadratic Equations
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023