Q.
Let f(x)=∣∣x36psinx−1p2cosx0p3∣∣, where p is constant.
Then, dx3d3f(x)
at x=0 is
2045
227
IIT JEEIIT JEE 1997Continuity and Differentiability
Report Error
Solution:
Given, f(x)=∣∣x36psinx−1p2cosx0p3∣∣
On differentiating w.r.t. x, we get f′(x)=∣∣3x26pcosx−1p2−sinx0p3∣∣+∣∣x30psinx0p2cosx0p3∣∣+∣∣x360sinx−10cosx00∣∣ ⇒f′(x)=∣∣x36pcosx−1p2−sinx0p3∣∣ ⇒f′′(x)=∣∣6x6p−sinx−1p2−cosx0p3∣∣+0+0
and f′′′(x)=∣∣66p−cosx−1p2sinx0p3∣∣+0+0 ∴f"′(0)=∣∣66p−1−1p200p3∣∣=0= independent of p