Q. Let $A(3,2,0)$, $B(5,3,2)$, $C(-9,6, -3)$ be three points forming a triangle. $AD$, the bisector of $∠BAC$, meets $BC$ at $D$. Find the coordinates of the point $D$.
Introduction to Three Dimensional Geometry
Report Error
Solution:
$AB = \sqrt{\left(5-3\right)^{2}+\left(3-2\right)^{2}+\left(2-0\right)^{2}}$
$= \sqrt{4+1+4}=3$
$AC = \sqrt{\left(-9-3\right)^{2}+\left(6-2\right)^{2}+\left(-3-0\right)^{2}}$
$=\sqrt{144+16+9}=13$
Since $AD$ is the bisector of $∠BAC$, we have
$\frac{BD}{DC} = \frac{AB}{AC}=\frac{3}{13}$
($\because$ Internal bisector of angle of a triangle divides the opposite side in the ratio of sides containing the angle).
i.e., $D$ divides $BC$ in the ratio $3:13$.
Hence, the coordinates of $D$ are
$\left(\frac{3\left(-9\right)+13\left(5\right)}{3+13}, \frac{3\left(6\right)+13\left(3\right)}{3+13}, \frac{3\left(-3\right)+13\left(2\right)}{3+13}\right)$
$= \left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$.
Questions from Introduction to Three Dimensional Geometry
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023