Q. $\int_\limits{0}^{\pi} \frac{x d x}{4 \cos ^{2} x+9 \sin ^{2} x}=$
TS EAMCET 2017
Report Error
Solution:
We have,
$ I =\int_\limits{0}^{\pi} \frac{x d x}{4 \cos ^{2} x+9 \sin ^{2} x} $
$ \Rightarrow I=\int\limits_{0}^{\pi} \frac{(\pi-x) d x}{4 \cos ^{2}(\pi-x)+9 \sin ^{2}(\pi-x)}$
$ \Rightarrow I=\int_\limits{0}^{\pi} \frac{(\pi-x) d x}{4 \cos ^{2} x+9 \sin ^{2} x} $
$ \Rightarrow 2 I=\int_\limits{0}^{\pi} \frac{\pi d x}{4 \cos ^{2} x+9 \sin ^{2} x} $
$\Rightarrow 2 I=\int_\limits{0}^{\pi} \frac{\pi \sec ^{2} x d x}{4+9 \tan ^{2} x} $
$ \Rightarrow 2 I=\int_\limits {0}^{\pi / 2} \frac{2 \pi \sec ^{2} x d x}{4+9 \tan ^{2} x} $
$[\because \int_\limits{0}^{2 a} f(x) d x-2 \int_\limits{0}^{a} f(x) d x \Rightarrow f(2 a-x)=f(x)]$
$\Rightarrow I=\frac{\pi}{9} \int_\limits{0}^{\pi / 2} \frac{\sec ^{2} x d x}{\frac{4}{9}+\tan ^{2} x}$
Put $\tan x=t \Rightarrow \sec ^{2} x d x=d t$
$x=0, t=0, x=\frac{\pi}{2}, t=\infty$
$\Rightarrow I=\frac{\pi}{9} \int_\limits{0}^{\infty} \frac{d t}{\left(\frac{2}{3}\right)^{2}+t^{2}}$
$\Rightarrow I=\frac{\pi}{9} \times \frac{3}{2}\left[\tan ^{-1} \frac{3 t}{2}\right]_{0}^{\infty}$
$\Rightarrow I=\frac{\pi}{9} \times \frac{3}{2} \times \frac{\pi}{2}=\frac{\pi^{2}}{12}$
Questions from TS EAMCET 2017
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023