Q.
Match the following.
List I
List II
(I)
$\int^{1}_{-1} x |x |dx $
(a)
$\frac{\pi}{2}$
(II)
$\int^{\frac{\pi}{2}}_{0} \left( 1 + \log\left(\frac{4+3 \sin x }{4+3 \cos x}\right)\right)dx $
(b)
$\int^{\frac{\pi}{2}}_{0} f\left(x\right)dx $
(III)
$\int^{a}_{0} f(x) dx$
(c)
$\int^a_0 [ f(x) + f(-x)] dx $
(IV)
$\int^a_{-a} f(x) dx $
(d)
0
(e)
$\int^a_0 f(a -x)dx$
List I | List II | ||
---|---|---|---|
(I) | $\int^{1}_{-1} x |x |dx $ | (a) | $\frac{\pi}{2}$ |
(II) | $\int^{\frac{\pi}{2}}_{0} \left( 1 + \log\left(\frac{4+3 \sin x }{4+3 \cos x}\right)\right)dx $ | (b) | $\int^{\frac{\pi}{2}}_{0} f\left(x\right)dx $ |
(III) | $\int^{a}_{0} f(x) dx$ | (c) | $\int^a_0 [ f(x) + f(-x)] dx $ |
(IV) | $\int^a_{-a} f(x) dx $ | (d) | 0 |
(e) | $\int^a_0 f(a -x)dx$ |
TS EAMCET 2017
Report Error
Solution:
$\int_\limits{-1}^{1} x|x| d x=0 [\because x|x|$ is an odd function]
II. Let $I=\int_\limits{0}^{\pi / 2}\left[1+\left(\log \frac{4+3 \sin x}{4+3 \cos x}\right)\right] d x$
$\left.I=\int_{0}^{\pi / 2}\left(1+\mid \log \frac{4+3 \sin \left(\frac{\pi}{2}-x\right)}{4+3 \cos \left(\frac{\pi}{2}-x\right)}\right]\right) d x$
$I=\int_{0}^{\pi / 2}\left(1+\left(\log \frac{4+3 \cos x}{4+3 \sin x}\right)\right) d x$
$\Rightarrow 2 I=\int\limits_{0}^{\pi / 2}\left(2+\log \frac{4+3 \sin x}{4+3 \cos x}\right.$
$\left.+\log \frac{4+3 \cos x}{4+3 \sin x}\right) d x$
$\Rightarrow 2 I=\int\limits_{0}^{\pi / 2}\left(2+\log \frac{(4+3 \sin x)(4+3 \cos x)}{(4+3 \cos x)(4+3 \sin x)}\right) d x$
$\Rightarrow 2 I=\int_{0}^{\pi / 2}(2+\log 1) d x=\int_\limits{0}^{\pi / 2} \,2 \,d x=\pi$
$\Rightarrow I=\frac{\pi}{2}$
III. $\int_\limits{0}^{a} f(x) \,d x=\int_\limits{0}^{a} f(a-x)\, d x$
IV. $ \int_\limits{-a}^{a} f(x) \,d x =\int_\limits{0}^{a} f(x) \,d x+\int_\limits{0}^{a} f(-x) \,d x $
$ =\int_\limits{0}^{a}[f(x)+f(-x)] \,d x $
Questions from TS EAMCET 2017
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023