Q. If $x _{ r }=\cos \frac{\pi}{4^{r}}+ i \sin \frac{\pi}{4^{r}}, y _{ r }= CiS \left(\frac{\pi}{3^{r}}\right)$ and $z _{ r }=x_{r} \cdot\left(y_{r}\right)^{4}$, then $z _{1} z _{2} z _{3} \ldots \ldots \ldots \ldots \ldots$..... $\infty$ is
Solution:
$z_{1} z_{2} z_{3} \ldots \ldots \ldots \ldots \ldots . . .$ to $\infty=\left(x_{1} x_{2} x_{3} \ldots \ldots \ldots \ldots \ldots . . . . \ldots \infty\right)\left(y_{1} y_{2} y_{3} \ldots \ldots \ldots \ldots \ldots \ldots \text {.......... } \infty\right)^{4} \left(\right.$ CiS $\left(\frac{\pi}{4}\right)$
$\operatorname{CiS}\left(\frac{\pi}{4^{2}}\right) \operatorname{CiS}\left(\frac{\pi}{4^{3}}\right)$..........to $\left.\infty\right)\left(\operatorname{CiS}\left(\frac{\pi}{3}\right) \operatorname{CiS}\left(\frac{\pi}{3^{2}}\right) \operatorname{CiS}\left(\frac{\pi}{3^{3}}\right) \ldots \ldots \ldots . . \text { to } \infty\right)^{4}$
$=\operatorname{CiS}\left(\frac{\pi}{4}+\frac{\pi}{4^{2}}+\frac{\pi}{4^{3}}+\ldots \ldots \ldots \ldots \ldots \ldots . . t o \infty\right)\left[\text { cis }\left(\frac{\pi}{3}+\frac{\pi}{3^{2}}+\frac{\pi}{3^{3}}+\ldots \ldots \ldots \ldots \ldots \ldots . . t o \infty\right)\right]^{4}$
$=\operatorname{cis} \pi\left(\frac{\frac{1}{4}}{1-\frac{1}{4}}\right)\left[\operatorname{cis} \pi\left(\frac{\frac{1}{3}}{1-\frac{1}{3}}\right)\right]^{4}=\operatorname{CiS}\left(\frac{\pi}{3}\right) i ^{4}=\operatorname{CiS}\left(\frac{\pi}{3}\right)$
Questions from KCET 2022
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023