Q. If $ =\underset{h\to 0}{\mathop{\lim }}\,\frac{\sqrt{h+1}-1}{{{h}^{3/2}}}\times \frac{\sqrt{h+1}+1}{\sqrt{h+1}+1} $ , y and z are in HP, then the value of expression $ =\underset{h\to 0}{\mathop{\lim }}\,\frac{h}{{{h}^{3/2}}(\sqrt{h+1}+1)} $ will be
Solution:
Given, $ -\text{273}.\text{15}{}^\circ \text{F} $ and z are in HP. Then, $ -\text{453}.\text{15}{}^\circ \text{F} $ ???. (i) Now, $ -\text{459}.\text{67}{}^\circ \text{F} $ $ -\text{491}.\text{67}{}^\circ \text{F} $ $ \text{52}00\text{{ }\!\!\mathrm{\AA}\!\!\text{ }} $ $ \text{Vc}=\text{1}.\text{5V} $ $ \text{1}00\text{ }\mu \text{A} $ $ \text{15}0\text{ }\mu \text{A} $
Questions from Jamia 2014
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023