Q. If $\cos x \operatorname{cosec} 2 x=\cot 2 x$, then $x=$

Solution:

$\cos x \text{cosec} 2 x =\cot 2 x $
$\Rightarrow \frac{\cos x}{2 \sin x \cos x} $
$\Rightarrow \cos x =\cos 2 x $
$\Rightarrow 2 x =2 n \pi \pm x$
$x =\frac{2 n \pi}{2 \pm 1}=\frac{2 n \pi}{3}$
or $2 n \pi$