Q. Three lines
$L_{1} : \vec{r} = \lambda\hat{i},\, \lambda\,\in\,ℝ$
$L_{2} : \vec{r} = \hat{k} + \mu\hat{j},\,\mu\,\in\,ℝ $ and
$L_{3} : \vec{r} = \hat{i} + \hat{j} + v\hat{k}, \,v \,\in\,ℝ $
are given. For which point(s) $Q$ on $L_{2}$ can we find a point P on $L_{1}$ and a point R on $L_{3}$ so that P, Q and R are collinear?

JEE AdvancedJEE Advanced 2019 Report Error

Solution:

Let $P\left(\lambda, 0, 0\right), Q\left(0, \mu, 1\right), R\left(1, 1, v\right)$ be points. $L_1, L_2$ and $L_3$ respectively
Since $P, Q, R$ are collinear, $\overrightarrow{PQ}$ iscollinear with $\overrightarrow{QR}$
Hence $=\frac{-\lambda}{1}=\frac{\mu}{1-\mu}=\frac{1}{v-1}$
For every $\mu\,\in\,R-\left\{0, 1\right\}$ there exist unique $\lambda, v\,\in\,R$
Hence Q cannot have coordinates $(0, 1, 1)$ and $(0, 0, 1).$

Questions from JEE Advanced 2019