Q. For the given LPP (Linear Programming Problem) max $ z=5x+3y $ $ 2x+y\le 12 $ $ 3x+2y\le 20 $ $ x\ge 0,\,y\ge 0 $ the optimal solution set is
Solution:
Given LPP is $ Max\,z=5x+3y $ $ 2x+y\le 12 $ $ 3x+2y\le 20 $ $ x\ge 0,\,\,\,\,\,\,\,\,\,y\ge 0 $ First we consider all the inequalities as equations.
Equations
Points
$ 2x+y=12 $
$ (0,\,\,12),\,\,(6,0) $
and
$ (0,\,\,10),\,\,\,\,\left(
$ 3x+2y=20 $
\frac{20}{3},0 \right) $
Now, plot all these points on a graph paper and make a figure.
For intersection point P, solve both equation of lines, we get $ \begin{align} & 4x+2y=24 \\ & 3x+2y=20 \\ & -\,\,\,\,\,\,\,\,\,\,-\,\,\,\,\,\,\,\,\,- \\ & \_\_\_\_\_\_\_\_\_\_ \\ & -5x=-6 \\ \end{align} $ $ \Rightarrow $ $ x=\frac{6}{5} $ and then $ y=\frac{22}{5} $ $ \therefore $ Convex region is TSQD with extreme point $ T(0,8),\,\,S(1,5),\,Q(2,4) $ and $ D(10,0) $ . Now, apply corner point method
Points
Objective function Max $ Z=5x+3y $
$ O(0,0) $
$ 5\times 0+3\times 0=0 $
$ B(0,10) $
$ 5\times 0+3\times 10=30 $
$ P(4,4) $
$ 5\times 4+3\times 4=32(\max ) $
$ A(6,0) $
$ 5\times 6+3\times 0=30 $
$ \therefore $ Optimal solution set is $ (4,4) $ on which the objective function is maximize.

Questions from J & K CET 2013
1. The value of $ \cos \left( \frac{3\pi }{2}+x \right)\,\cos \,(2\pi +x)\left\{ \cot \left( \frac{3\pi }{2}-x \right)+\cot \,(2\pi +x) \right\} $ is
Trigonometric Functions
2. If $ \sin B=3\sin (2A+B), $ then $ 2\tan A+\tan (A+B) $ =
Trigonometric Functions
3. If $ \theta =\frac{\pi }{{{2}^{n}}+1}, $ then the value of $ {{2}^{n}}\cos \theta \,\cos \,2\theta \,\cos \,{{2}^{2}}\theta .....\cos {{2}^{n-1}}\theta $ is
Trigonometric Functions
4. Using the principal values, the value of $ {{\sin }^{-1}}\left\{ \sin \frac{5\pi }{6} \right\}+{{\tan }^{-1}}\left\{ \tan \frac{\pi }{6} \right\} $ = ?
Inverse Trigonometric Functions
5. Find the value of $ {{\cos }^{-1}}\left( \frac{4}{5} \right)+{{\tan }^{-1}}\left( \frac{3}{5} \right) $ .
Inverse Trigonometric Functions
Questions from Linear Programming
1. Minimize $ z = x + 3y $ subject to the constraints
$ x+y \ge10 $
$ 2x-y \ge0 $
$ x,y \ge0 $
In the above Linear Programming Problem, the objective function is
J & K CET 2016
Mathematics Most Viewed Questions
1. The solution of $\frac{dy}{dx} = \frac{y}{x}+\tan \frac{y}{x}$ is
WBJEE 2011
Differential Equations
2. The solution of the differential equation $\frac{dy}{dx} = (x +y)^2$ is
COMEDK 2009
Differential Equations
3. $\int\frac{1}{\sin x\, \cos x}$ dx is equal to
KEAM 2016
Integrals
4. If $\begin{bmatrix}1&- \tan\theta \\ \tan \theta&1\end{bmatrix}\begin{bmatrix}1&\tan \theta \\ - \tan \theta &1\end{bmatrix}^{-1} = \begin{bmatrix}a&-b\\ b&a\end{bmatrix}$ then
COMEDK 2009
Matrices
5. The value of $ \int{\frac{{{x}^{2}}+1}{{{x}^{4}}-{{x}^{2}}+1}}dx $ is
KEAM 2007
Integrals
Latest Updates
- JEE Main 2023 February 25th Shift 1 Morning
- JEE Main 2023 February 25th Shift 2 Evening
- JEE Main 2023 January 31st Shift 1 Morning
- JEE Main 2023 January 31st Shift 2 Evening
- JEE Main 2023 January 30th Shift 1 Morning
- JEE Main 2023 January 30th Shift 2 Evening
- JEE Main 2023 January 25th Shift 1 Morning
- JEE Main 2023 January 25th Shift 2 Evening
- JEE Main 2023 January 24th Shift 1 Morning
- JEE Main 2023 January 24th Shift 2 Evening
- JEE Main 2023 February 1st Shift 1 Morning
- JEE Main 2023 February 1st Shift 2 Evening
- JEE Main 2022 July 25th Shift 1 Morning
- JEE Main 2022 July 25th Shift 2 Evening
- JEE Main 2022 July 26th Shift 1 Morning
- JEE Main 2022 July 28th Shift 1 Morning
- JEE Advanced 2022 Paper 2
- JEE Advanced 2022 Paper 1
- JEE Advanced 2021 Paper 2
- JEE Advanced 2021 Paper 1
- JEE Advanced 2020 Paper 2
- JEE Advanced 2020 Paper 1
- NEET 2022 Physics Answer Key
- NEET 2022 Chemistry Answer Key
- NEET 2022 Botany Biology Answer Key
- NEET 2022 Zoology Biology Answer Key
- NEET Rank Predictor 2023