Q. For a particle of mass $m$ executing SHM with angular frequency $\omega $ , the kinetic energy $k$ is given by $k=k_{0}cos^{2} \omega t .$ The equation of its displacement can be

NTA AbhyasNTA Abhyas 2022 Report Error

Solution:

If m is the mass, r is the amplitude of oscillation, then maximum kinetic energy,
$k_{0}=\frac{1}{2}m\left(\omega \right)^{2}r^{2} \, \, or \, r=\left(\frac{2 k_{0}}{m \left(\omega \right)^{2}}\right)^{\frac{1}{2}}$
The displacement equation can be
$y=rsin \omega t=\left(\frac{2 k_{0}}{m \left(\omega \right)^{2}}\right)^{\frac{1}{2}}sin ⁡ \omega t$