Q. Electron in hydrogen atom first jumps from third excited state to second excited state and then from second excited to the first excited state. The ratio of the wavelengths $\lambda _{1}:\lambda _{2}$ emitted in the two cases is

NTA AbhyasNTA Abhyas 2022 Report Error

Solution:

Solution
According to Rydberg formula
$\frac{1}{\lambda } = R \left[\frac{1}{n_{ f ⁡}^{2}} - \frac{1}{n_{ i ⁡}^{2}}\right]$
In first case, nf = 3, ni = 4
$∴ \frac{1}{\left(\lambda \right)_{1}} = R \left[\frac{1}{3^{2}} - \frac{1}{4^{2}}\right] = R ⁡ \left[\frac{1}{9} - \frac{1}{1 6}\right] = \frac{7}{1 4 4} R ⁡ … \left(\text{i}\right)$
In second case, nf = 2, ni = 3
$∴ \frac{1}{\left(\lambda \right)_{2}} = R \left[\frac{1}{2^{2}} - \frac{1}{3^{2}}\right] = R ⁡ \left[\frac{1}{4} - \frac{1}{9}\right] = \frac{5}{3 6} R ⁡ … \left(\text{i} \text{i}\right)$
Divide (ii) by (i) we get
$ \frac{\lambda _{1}}{\lambda _{2}} = \frac{5}{3 6} \times \frac{1 4 4}{7} = \frac{2 0}{7}$