(2023)2023 =(2030−7)2023 =(35K−7)2023 =2023C0(35K)2023(−7)0+2023C1(35K)2022(−7)+….+ …⋯+2023C2022(−7)2023 =35N−72023. Now ,−72023=−7×72022=−7(72)1011 =−7(50−1)1011 =−7(1011C0501011−1011C1(50)1010+……⋅1011C1011) =−7(5λ−1) =−35λ+7 ∴ when (2023)2023 is divided by 35 remainder is 7