Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of functions f: 1,2,3,4 arrow a ∈: Z|a| ≤ 8 satisfying f(n)+(1/n) f( n +1)=1, ∀ n ∈ 1,2,3 is
Q. The number of functions
f
:
{
1
,
2
,
3
,
4
}
→
{
a
∈:
Z
∣
a
∣
≤
8
}
satisfying
f
(
n
)
+
n
1
f
(
n
+
1
)
=
1
,
∀
n
∈
{
1
,
2
,
3
}
is
1027
120
JEE Main
JEE Main 2023
Relations and Functions
Report Error
A
2
77%
B
1
3%
C
4
13%
D
3
6%
Solution:
f
:
{
1
,
2
,
3
,
4
}
→
{
a
∈
Z
:
∣
a
∣
≤
8
}
f
(
n
)
+
n
1
f
(
n
+
1
)
=
1
,
∀
n
∈
{
1
,
2
,
3
}
f
(
n
+
1
)
must be divisible by
n
f
(
4
)
⇒
−
6
,
−
3
,
0
,
3
,
6
f
(
3
)
⇒
−
8
,
−
6
,
−
4
,
−
2
,
0
,
2
,
4
,
6
,
8
f
(
2
)
⇒
−
8
,
……⋯⋯⋯
,
8
f
(
1
)
⇒
−
8
,
……………
.8
3
f
(
4
)
must be odd since
f
(
3
)
should be even therefore 2 solution possible.