Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If m and n respectively are the numbers of positive and negative values of θ in the interval [-π, π] that satisfy the equation cos 2 θ cos (θ/2)= cos 3 θ cos (99/2), then m n is equal to
Q. If
m
and
n
respectively are the numbers of positive and negative values of
θ
in the interval
[
−
π
,
π
]
that satisfy the equation
cos
2
θ
cos
2
θ
=
cos
3
θ
cos
2
99
, then
mn
is equal to__
1233
136
JEE Main
JEE Main 2023
Trigonometric Functions
Report Error
Answer:
25
Solution:
cos
2
θ
⋅
cos
2
θ
=
cos
3
θ
⋅
cos
2
9
θ
⇒
2
cos
2
θ
⋅
cos
2
θ
=
2
cos
2
9
θ
⋅
cos
3
θ
⇒
cos
2
5
θ
+
cos
2
3
θ
=
cos
2
15
θ
+
cos
2
3
θ
⇒
cos
2
15
θ
=
cos
2
5
θ
⇒
2
15
θ
=
2
kπ
±
2
5
θ
5
θ
=
2
kπ
or
10
θ
=
2
kπ
θ
=
5
2
kπ
θ
=
5
kπ
∴
θ
=
{
−
π
,
5
−
4
π
,
5
−
3
π
,
5
−
2
π
,
5
−
π
,
0
,
5
π
,
5
2
π
,
5
3
π
,
5
4
π
,
π
}
m
=
5
,
n
=
5
∴
m
⋅
n
=
25