Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(t) be a solution of the differential equation (d y/d t)+α y=γ e-β t where, α >0, β>0 and γ >0. Then displaystyle lim t arrow ∞ y(t)
Q. Let
y
=
y
(
t
)
be a solution of the differential equation
d
t
d
y
+
α
y
=
γ
e
−
βt
where,
α
>
0
,
β
>
0
and
γ
>
0
. Then
t
→
∞
lim
y
(
t
)
429
139
JEE Main
JEE Main 2023
Differential Equations
Report Error
A
is
−
1
B
is 0
C
is 1
D
does not exist
Solution:
d
t
d
y
+
α
y
=
γ
e
−
βt
I.F.
=
e
∫
α
d
t
=
e
α
t
Solution
⇒
y
⋅
e
α
t
=
∫
γ
c
−
βT
⋅
c
α
t
d
t
⇒
y
e
α
t
=
γ
(
α
−
β
)
e
(
α
−
β
)
t
+
c
⇒
y
=
e
βt
(
α
−
β
)
γ
+
e
α
t
c
So,
t
→
∞
lim
y
(
t
)
=
∞
γ
+
∞
c
=
0