Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits(1/3)3| log e x| d x=(m/n) log e((n2/v)), where m and n are coprime natural numbers, then m2+n2-5 is equal to
Q. If
3
1
∫
3
∣
lo
g
e
x
∣
d
x
=
n
m
lo
g
e
(
v
n
2
)
, where
m
and
n
are coprime natural numbers, then
m
2
+
n
2
−
5
is equal to _____
402
131
JEE Main
JEE Main 2023
Integrals
Report Error
Answer:
20
Solution:
3
1
∫
3
∣
ℓ
n
x
∣
d
x
=
3
1
∫
1
(
−
ℓ
n
x
)
d
x
+
1
∫
3
(
ℓ
n
x
)
d
x
=
−
[
x
ℓ
n
x
−
x
]
1/3
1
+
[
x
ℓ
n
x
−
x
]
1
3
=
−
[
−
1
−
(
3
1
ℓ
n
3
1
−
3
1
)
]
+
[
3
ℓ
n
3
−
3
−
(
−
1
)]
=
[
−
3
2
−
3
1
ℓ
n
3
1
]
+
[
3
ℓ
n
3
−
2
]
=
−
3
4
+
3
8
ℓ
n
3
=
3
4
(
2
ℓ
n
3
−
1
)
=
3
4
(
ℓ
n
e
9
)
∴
m
=
4
,
n
=
3
Now,
m
2
+
n
2
−
5
=
16
+
9
−
5
=
20