Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the function f(x)= begincases (1+| cos x|) (λ/| cos x|) , 0< x < (π/2) μ , x=(π/2) ( cot 6 x/e cot 4 x) (π/2)< x< π endcases is continuous at x=(π/2), then 9 λ+6 log e μ+μ6- e 6 λ is equal to
Q. If the function
f
(
x
)
=
⎩
⎨
⎧
(
1
+
∣
cos
x
∣
)
∣
c
o
s
x
∣
λ
μ
e
c
o
t
4
x
c
o
t
6
x
,
0
<
x
<
2
π
,
x
=
2
π
2
π
<
x
<
π
is continuous at
x
=
2
π
, then
9
λ
+
6
lo
g
e
μ
+
μ
6
−
e
6
λ
is equal to
6330
118
JEE Main
JEE Main 2023
Continuity and Differentiability
Report Error
A
2
e
4
+
8
B
11
C
8
D
10
Solution:
⇒
x
→
2
π
+
lim
e
c
o
t
4
x
c
o
t
6
x
=
x
→
2
π
+
lim
e
s
i
n
6
x
⋅
c
o
s
4
x
s
i
n
4
x
×
c
o
s
6
x
=
e
2/3
⇒
x
→
2
π
−
lim
(
1
+
∣
cos
x
∣
)
c
o
s
x
λ
∣
=
e
λ
⇒
f
(
π
/2
)
=
μ
For continuous function
⇒
e
2/3
=
e
λ
=
μ
λ
=
3
2
,
μ
=
e
2/3
Now,
9
λ
+
6
lo
g
e
μ
+
μ
6
−
e
6
λ
=
10