Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ limits(π/3)(π/2) ((2+3 sin x)/ sin x(1+ cos x)) d x is equal to
Q. The value of
3
Ï€
​
∫
2
Ï€
​
​
s
i
n
x
(
1
+
c
o
s
x
)
(
2
+
3
s
i
n
x
)
​
d
x
is equal to
832
123
JEE Main
JEE Main 2023
Integrals
Report Error
A
2
7
​
−
3
​
−
lo
g
e
​
3
​
0%
B
3
10
​
−
3
​
−
lo
g
e
​
3
​
50%
C
3
10
​
−
3
​
+
lo
g
e
​
3
​
50%
D
−
2
+
3
3
​
+
lo
g
e
​
3
​
0%
Solution:
Ï€
/3
∫
Ï€
/2
​
(
s
i
n
x
(
1
+
c
o
s
x
)
2
+
3
s
i
n
x
​
)
d
x
=
2
Ï€
/3
∫
Ï€
/2
​
s
i
n
x
+
s
i
n
x
c
o
s
x
d
x
​
+
3
3
Ï€
/3
∫
Ï€
/2
​
1
+
c
o
s
x
d
x
​
Ï€
/3
∫
Ï€
/2
​
1
+
c
o
s
x
d
x
​
=
Ï€
/3
∫
Ï€
/2
​
s
i
n
2
x
1
−
c
o
s
x
​
d
x
=
Ï€
/3
∫
Ï€
/2
​
(
cosec
2
x
−
cot
x
cosec
x
)
d
x
=
(
cosec
x
−
cot
x
)
Ï€
/3
∫
Ï€
/2
​
=
(
1
)
−
(
3
​
2
​
−
3
​
1
​
)
=
1
−
3
​
1
​
Ï€
/3
∫
Ï€
/2
​
s
i
n
x
(
1
+
c
o
s
x
)
d
x
​
=
∫
(
2
t
a
n
x
/2
)
(
1
+
1
−
t
a
n
2
x
/2
)
d
x
​
=
∫
2
t
a
n
x
/2
(
1
+
t
a
n
2
x
/2
)
s
e
c
2
x
/2
d
x
​
tan
x
/2
=
t
sec
x
/2
2
1
​
d
x
=
d
t
2
1
​
∫
(
t
1
+
t
2
​
)
d
t
=
2
1
​
[
ln
+
2
t
​
2
]
3
​
1
​
1
​
=
2
1
​
[
(
0
+
2
1
​
)
−
(
ln
3
​
1
​
+
6
1
​
)
]
=
(
3
1
​
+
ln
3
​
)
2
1
​
=
(
6
1
​
+
2
1
​
ln
3
​
)
2
(
6
1
​
+
2
1
​
ln
3
​
)
+
3
(
1
−
3
​
1
​
)
=
3
1
​
+
ln
3
​
+
3
−
3
​
=
3
10
​
+
ln
3
​
−
3
​