Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A= beginpmatrix1 0 0 0 4 -1 0 12 -3 endpmatrix. Then the sum of the diagonal elements of the matrix (A+I)11 is equal to :
Q. Let
A
=
⎝
⎛
1
0
0
0
4
12
0
−
1
−
3
⎠
⎞
. Then the sum of the diagonal elements of the matrix
(
A
+
I
)
11
is equal to :
1667
131
JEE Main
JEE Main 2023
Matrices
Report Error
A
2050
37%
B
4094
14%
C
6144
10%
D
4097
40%
Solution:
A
2
=
⎣
⎡
1
0
0
0
4
12
0
−
1
−
3
⎦
⎤
⎣
⎡
1
0
0
0
4
12
0
−
1
−
3
⎦
⎤
=
⎣
⎡
1
0
0
0
4
12
0
−
1
−
3
⎦
⎤
=
A
⇒
A
3
=
A
4
=
……
=
A
(
A
+
I
)
11
=
11
C
0
A
11
+
11
C
1
A
10
+
…
.
⋅
11
C
10
A
+
11
C
11
I
=
(
11
C
0
+
11
C
1
+
…
.
11
C
10
)
A
+
I
=
(
2
11
−
1
)
A
+
I
=
2047
A
+
I
∴
Sum of diagonal elements
=
2047
(
1
+
4
−
3
)
+
3
=
4094
+
3
=
4097