Q.
Let the line L:2x−1=−1y+1=1z−3 intersect the plane 2x+y+3z=16 at the point P. Let the point Q be the foot of perpendicular from the point R(1,−1,−3) on the line L. If α is the area of triangle PQR, then α2 is equal to
Any point on L((2λ+1),(−λ−1),(λ+3)) 2(2λ+1)+(−λ−1)+3(λ+3)=16 6λ+10=16⇒λ=1 ∴P=(3,−2,4) DR of QR=⟨2λ,−λ,λ+6⟩ DR of L=⟨2,−1,1⟩ 4λ+λ+λ+6=0 6λ+6=0⇒λ=−1 Q=(−1,0,2)