Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a differentiable function f satisfy f(x)+∫ limits3x (f(t)/t) d t=√x+1, x ≥ 3. Then 12 f(8) is equal to :
Q. Let a differentiable function
f
satisfy
f
(
x
)
+
3
∫
x
t
f
(
t
)
d
t
=
x
+
1
,
x
≥
3
. Then
12
f
(
8
)
is equal to :
1536
132
JEE Main
JEE Main 2023
Integrals
Report Error
A
19
0%
B
17
100%
C
1
0%
D
34
0%
Solution:
Differentiate w.r.t. x
f
′
(
x
)
+
x
f
(
x
)
=
2
x
+
1
1
I.F.
=
e
∫
x
1
d
x
=
e
l
n
x
=
x
x
f
(
x
)
=
∫
2
x
+
1
x
d
x
x
+
1
=
t
2
=
∫
2
t
t
2
−
1
2
t
d
t
x
f
(
x
)
=
3
t
3
−
t
+
c
x
f
(
x
)
=
3
(
x
+
1
)
3/2
−
x
+
1
+
c
Also putting
x
=
3
in given equation
f
(
3
)
+
0
=
4
f
(
3
)
=
2
⇒
C
=
8
−
3
8
=
3
16
f
(
x
)
=
x
3
(
x
+
1
)
3/2
−
x
+
1
+
3
16
f
(
8
)
=
8
9
−
3
+
3
16
=
24
34
⇒
12
f
(
8
)
=
17