Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let R be a relation on N × N defined by (a, b) R (c, d) if and only if a d(b-c)=b c(a-d). Then R is
Q. Let
R
be a relation on
N
×
N
defined by
(
a
,
b
)
R
(
c
,
d
)
if and only if
a
d
(
b
−
c
)
=
b
c
(
a
−
d
)
. Then
R
is
1988
120
JEE Main
JEE Main 2023
Relations and Functions - Part 2
Report Error
A
transitive but neither reflexive nor symmetric
15%
B
symmetric but neither reflexive nor transitive
35%
C
symmetric and transitive but not reflexive
10%
D
reflexive and symmetric but not transitive
40%
Solution:
(a, b)
R
(
c
,
d
)
⇒
a
d
(
b
−
c
)
=
b
c
(
a
−
d
)
Symmetric:
(
c
,
d
)
R
(
a
,
b
)
⇒
c
b
(
d
−
a
)
=
d
a
(
c
−
b
)
⇒
Symmetric Reflexive:
(a, b)
R
(
a
,
b
)
⇒
ab
(
b
−
a
)
=
ba
(
a
−
b
)
⇒
Not reflexive
Transitive:
(
2
,
3
)
R
(
3
,
2
)
and
(
3
,
2
)
R
(
5
,
30
)
but
((
2
,
3
)
,
(
5
,
30
))
∈
/
R
⇒
Not transitive