Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be the solution of the differential equation x3 d y+(x y-1) d x=0, x>0, y((1/2))=3- e. Then y(1) is equal to
Q. Let
y
=
y
(
x
)
be the solution of the differential equation
x
3
d
y
+
(
x
y
−
1
)
d
x
=
0
,
x
>
0
,
y
(
2
1
)
=
3
−
e
. Then
y
(
1
)
is equal to
133
119
JEE Main
JEE Main 2023
Differential Equations
Report Error
A
2
−
e
33%
B
e
0%
C
1
67%
D
3
0%
Solution:
d
x
d
y
=
x
3
1
−
x
y
=
x
3
1
−
x
2
y
d
x
d
y
+
x
2
y
=
x
3
1
If
=
e
∫
x
2
1
d
x
=
e
−
x
1
y
⋅
e
−
x
1
=
∫
e
−
x
1
⋅
x
3
1
d
x
(
put
−
x
1
=
t
)
y
⋅
e
−
x
1
=
−
∫
e
t
⋅
t
d
t
y
=
x
1
+
1
+
C
e
x
1
Where
C
is constant
Put
x
=
2
1
3
−
e
=
2
+
1
+
C
e
2
C
=
−
e
1
y
(
1
)
=
1