Q.
Let α be a root of the equation (a−c)x2+(b−a)x+(c−b)=0
where a,b,c are distinct real numbers such that the matrix ⎣⎡α21aα1b11c⎦⎤
is singular. Then, the value of (b−a)(c−b)(a−c)2+(a−c)(c−b)(b−a)2+(a−c)(b−a)(c−b)2 is
Δ=0=∣∣α21aα1b11c∣∣ ⇒α2(c−b)−α(c−a)+(b−a)=0
It is singular when α=1 (b−a)(c−b)(a−c)2+(a−c)(c−b)(b−a)2+(a−c)(b−a)(c−b)2 (a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3 =3(a−b)(b−c)(c−a)(a−b)(b−c)(c−a)=3