JEE Main Question Paper with Solution 2022 July 29th Shift 1 - Morning

JEE Main Physics Question Paper with Solution 2022 July 29th Shift 1 - Morning

A

Both (A) and (R) are true and (R) is the correct explanation of (A)

B

Both (A) and (R) are true but (R) is not the correct explanation of (A)

C

(A) is true but $( R )$ is false

D

(A) is false but (R) is true

Solution

$T = k \sqrt{\frac{\rho r^3}{ s ^{3 / 2}}}$
Dimensions of RHS
$\frac{\left[ M ^{1 / 2} L ^{-3 / 2}\right]\left[ L ^{3 / 2}\right]}{\left[ MT ^{-2}\right]^{3 / 4}}= M ^{1 / 8} L ^0 T ^{3 / 2}$
Dimensions of L.H.S $\neq$ Dimensions of R.H.S

A

$\frac{\sqrt{2}-1}{\sqrt{2}+1}$

B

$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$

C

$\frac{\sqrt{3}-1}{\sqrt{3}+1}$

D

$\frac{1}{3}$

Solution

image
$ \text { Max. Height }= h =\frac{ u ^2}{2 g } $
$ \Rightarrow u =\sqrt{2 gh }$
$ S = ut +\frac{1}{2} at ^2$
$ \frac{ h }{3}=\sqrt{2 ght }+\frac{1}{2}(- g ) t ^2$
$ \frac{ gt ^2}{2}-\sqrt{2 ght }+\frac{ h }{3}=0$
(Roots are $t _1 \& t _2$ )
$\frac{ t _2}{ t _1}=\frac{\sqrt{2 gh }+\sqrt{2 gh -4 \times \frac{ g }{2} \times \frac{ h }{3}}}{\sqrt{2 gh }-\sqrt{2 gh -4 \times \frac{ g }{2} \times \frac{ h }{3}}}$
$=\frac{\sqrt{2 gh }+\sqrt{\frac{4 gh }{3}}}{\sqrt{2 gh }-\sqrt{\frac{4 gh }{3}}}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$

A

4

B

Zero

C

8

D

16

Solution

$ t =\sqrt{ x }+4 $
$ \Rightarrow x =( t -4)^2= t ^2-8 t +16 $
$ \Rightarrow \frac{ dx }{ dt }=2 t -8 $
$ \left.\Rightarrow \frac{ dx }{ dt }\right|_{ t =4}=2 \times 4-8=0$

A

Zero

B

$\frac{E}{2}$

C

$\frac{E}{4}$

D

$E$

Solution

image
$E =\frac{1}{2} mu ^2$
At Highest point, Velocity $V = u \cos 60^{\circ}=\frac{ u }{2}$
$\therefore K . E$ at topmost point $=\frac{1}{2} m \left(\frac{ u }{2}\right)^2=\frac{ E }{4}$

A

$\hat{i}-2 \hat{j}+\hat{k}$

B

$-3 \hat{i}-2 \hat{j}+\hat{k}$

C

$-2 \hat{i}+2 \hat{k}$

D

$-2 \hat{i}-\hat{j}+2 \hat{k}$

Solution

$\overrightarrow{r_{c o m}}= \frac{m_1 \overrightarrow{r_1}+m_2 \overrightarrow{r_2}}{m_1+m_2}=\frac{1(\hat{ i }+2 \hat{ j }+\hat{ k })+3(-3 \hat{ i }-2 \hat{ j }+\hat{ k })}{1+3} $
$= -2 \hat{ i }-\hat{ j }+\hat{ k }$
$ |2 \hat{ i }-\hat{ j }+\hat{ k }|=\sqrt{(2)^2+(1)^2+(1)^2}=\sqrt{6}$

A

Remains same

B

Become 8 times its initial value

C

Become $\frac{1^{\text {th }}}{4}$ of its initial value

D

Become 4 times its initial value

Solution

Y depends on material of wire

A

$2 \pi \sqrt{ L /( g \cos \alpha)}$

B

$2 \pi \sqrt{ L /( g \sin \alpha)}$

C

$2 \pi \sqrt{ L / g }$

D

$2 \pi \sqrt{ L /( g \tan \alpha)}$

Solution

image

A

$\frac{\rho_0 r}{4 \varepsilon_0}\left(\frac{3}{4}-\frac{r}{R}\right)$

B

$\frac{\rho_0 r}{3 \varepsilon_0}\left(\frac{3}{4}-\frac{r}{R}\right)$

C

$\frac{\rho_0 r}{4 \varepsilon_0}\left(1-\frac{r}{R}\right)$

D

$\frac{\rho_0 r }{5 \varepsilon_0}\left(1-\frac{ r }{ R }\right)$

Solution

image
$ \oint \overrightarrow{ E } \cdot d \overrightarrow{ s }=\frac{Q_{ in }}{\varepsilon_{ o }} $
$ E \cdot 4 \pi r ^2=\frac{\int\limits_0^{ r } \rho_{ o }\left(\frac{3}{4}-\frac{ r }{ R }\right) 4 \pi r ^2 dr }{\varepsilon_0} $
$ E 4 \pi r ^2=\frac{\rho_{ o } 4 \pi}{\varepsilon_{ o }}\left(\frac{3}{4} \frac{ r ^3}{3}-\frac{ r ^4}{4 R }\right) $
$ Er r ^2=\frac{\rho_{ o } r ^3}{4 \varepsilon_o}\left\{1-\frac{ r }{ R }\right\} $
$ E =\frac{\rho_{ o } r }{4 \varepsilon_{ o }}\left\{1-\frac{ r }{ R }\right\}$

A

Both statement I and statement II are correct

B

Both statement I and statement II are incorrect

C

Statement I is correct but statement II is incorrect

D

Statement $I$ is incorrect but and statement II is correct

Solution

(Properties of conductor)
Statement - I, true as body of conductor acts as equipotential surface.
Statement - 2 True, as conductor is equipotential. Tangential component of electric field should be zero. Therefore electric field should be perpendicular to surface

A

$\frac{\sigma_1 \sigma_2}{\sigma_1+\sigma_2}$

B

$\frac{2 \sigma_1 \sigma_2}{\sigma_1+\sigma_2}$

C

$\frac{\sigma_1+\sigma_2}{2 \sigma_1 \sigma_2}$

D

$\frac{\sigma_1+\sigma_2}{\sigma_1 \sigma_2}$

Solution

image
Let length of wire be ' $\ell$ '
Area of wire as ' $A$ '
For equivalent wire length $=2 \ell \&$ area will be A
Thermal resistance
$ R _{ eq }= R _1+ R _2$
$\frac{2 \ell}{\sigma_{ eq } A }=\frac{\ell}{\sigma_1 A }+\frac{\ell}{\sigma_1 A }$
$ \frac{2 \ell}{\sigma_{ eq }}=\frac{\ell}{\sigma_1}+\frac{\ell}{\sigma_2} $
$\Rightarrow \sigma_{ eq }=\frac{2 \sigma_1 \sigma_2}{\sigma_1+\sigma_2}$

A

$4.4 A$

B

$1.55 A$

C

$2.2 A$

D

$3.11 A$

Solution

$ E =440 \operatorname{Sin} 100 \pi t, L=-\frac{\sqrt{2}}{\pi} H $
$ X _{ L }=\omega L =100 \pi \frac{\sqrt{2}}{\pi}=100 \sqrt{2} \Omega$
$ \text { Peak current } I _0=\frac{ E _0}{ X _{ L }}=\frac{440}{100 \sqrt{2}}=2.2 \sqrt{2} A$
$AC$ ammeter reads RMS value therefore reading will be $I _{ rms }$
$I _{ rms }=\frac{ I _0}{\sqrt{2}}=2.2 A$

A

t = 10 ms; U = 2 mJ

B

t = 10 ms; U = 1 mJ

C

t = 7 ms; U = 1 mJ

D

t = 7 ms; U = 2 mJ

Solution

Given circuit is R - L growth circuit
image
$ i=\frac{E}{R}\left(1-e^{-t / \tau}\right) $
$ i=\frac{E}{2 R}=\frac{E}{R}\left(1-e^{-t / \tau)}\right)$
Solving $t =\tau \ln 2$
$ t =\frac{1}{R} \ln 2=\frac{1}{100} 0.693=0.00693$
$ =7 ms$
$ i(15 ms )=\frac{E}{R}\left(1- e ^{-\frac{15}{10}}\right)$
$ i =\frac{6}{100}(1-1 / 4)=\frac{3}{4} \times \frac{6}{100} $
$U=\frac{1}{2} LI ^2$
by solving we get $U =1\, mJ$.

A

(a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)

B

(a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)

C

(a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)

D

(a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)

Solution

(a) uv rays - used for water purification
(b) x-rays used for diagnosing fracture
(c) Microwaves are used for mobile and radar communication
(d) Infrared waves show less scattering therefore used in foggy days
(a - ii), (b - i), (c - iii), (d - iv)

A

$\frac{h c}{E \lambda-h c}$

B

$\frac{h c \lambda}{E \lambda+h c}$

C

$\frac{ h \lambda}{ E \lambda+ hc }$

D

$\frac{h c \lambda}{E \lambda-h c}$

Solution

$ E =\frac{ hc }{\lambda}-\phi-( i ) $
$ 2 E =\frac{ hc }{\lambda^{\prime}}-\phi-(\text { ii) }$
(ii) - (i)
$E = hc \left(\frac{1}{\lambda^{\prime}}-\frac{1}{\lambda}\right) $
$ \Rightarrow \lambda^{\prime}=\frac{ hc \lambda}{ E \lambda+ hc }$

A

$3: 4$

B

$4: 3$

C

$1: 4$

D

$4: 1$

Solution

$E _{ n }=\frac{-13.6}{ n ^2} ev $
$ \Rightarrow \frac{ E _2- E _1}{ E _{\infty}- E _1}=\frac{13.6\left(1-\frac{1}{4}\right)}{13.6}=\frac{3}{4}$

A

$0.8$

B

$0.5$

C

$0.2$

D

$0.1$

Solution

Modulation index: $m=\frac{A_m}{A_c}$
Given $2 A_m=8$
$ A _{ m }+ A _{ c }=9 \Rightarrow A _{ c }=5$
$ \therefore m =\frac{4}{5}=0.8$

A

0.001 cm

B

0.002 mm

C

0.002 cm

D

0.005 cm

Solution

$ 1 MSD =\frac{1}{20} cm $
$1 VSD =\frac{24}{25} MSD =\frac{24}{25} \times \frac{1}{20} cm$
$ \therefore \text { Least count }=\frac{1}{20}\left(1-\frac{24}{25}\right) cm $
$=\frac{1}{20} \times \frac{1}{25}=\frac{1}{500} cm $
$ =0.002\, cm$

Answer: 75

Solution

$ R _{\max }=\frac{ u ^2 \sin 2\left(45^{\circ}\right)}{ g }=\frac{ u ^2}{ g }$
$ \frac{ R }{2}=\frac{ u ^2}{2 g }=\frac{ u ^2 \sin 2 \theta}{ g }$
$\sin 2 \theta=\frac{1}{2}$
$ 2 \theta=30^{\circ}, 150^{\circ}$
$ \theta=15^{\circ}, 75^{\circ}$

Answer: 4

Solution

$ PV ^\gamma=\text { const } \quad d =\frac{ m }{ V } $
$ p \left(\frac{ m }{ d }\right)^\gamma=\text { const } $
$ \frac{ p }{ d ^\gamma}=\text { const } $
$ \frac{ p _1}{ p _2}=\left(\frac{ d _1}{ d _2}\right)^\gamma=\left(\frac{1}{32}\right)^{7 / 5}=\frac{1}{128} $
$ \frac{ T _1}{ T _1}=\frac{ P _1 V _1}{ P _2 V _2}=\frac{1}{128} 32=\frac{1}{4}$

Answer: 3

Solution

$ C _{ v } / mix =\frac{ n _1 Cv _1+ n _2 Cv _2}{ n _1+ n _2}$
$ =\frac{1 \cdot \frac{3 R }{2}+3 \cdot \frac{5 R }{2}}{1+3} $
$ =\frac{9 R }{4}=\frac{\alpha^2}{4} R$
$ \alpha=3$

Answer: 3

Solution

$ B_{\text {centre }}=\frac{N \mu_0 1}{2 R} $
$ 37.68 \times 10^{-4}=\frac{100 \times 4 \pi \times 10^{-7} \times I }{2 \times 5 \times 10^{-2}} $
$ I =3 A $

Answer: 24

Solution

$ I _{ net }= I _1+ I _2+2 \sqrt{ I _1} \sqrt{ I _2} \cos \phi $
$ I _{\max } \text { for } \phi=0 \& I _{\min } \text { for } \phi=\pi $
$ I _{\max }=\left(\sqrt{ I _1}+\sqrt{ I _2}\right)^2=(\sqrt{9 I }+\sqrt{4 I })^2=25 I $
$ I _{\min }=\left(\sqrt{ I _1}-\sqrt{ I _2}\right)^2=(\sqrt{9 I }-\sqrt{4 I })^2= I $
$ I _{\max }- I _{\min }=25 I - I =24 I $

Answer: 11

Solution

image
$ \frac{314}{100}=2 \pi R R =0.5 \,m$
Magnetic Moment $= IA $
$=14 \times \pi R ^2 $
$=14 \times(3.14) \times \frac{1}{4} $
$=10.99 \approx 11.00$

Answer: 15

Solution

image
As incident vector A makes $i$ angle with normal z-axis \& refracted vector $R$ makes $r$ angle with normal $z$ - axis with help of direction cosine
$ i = \cos ^{-1}\left(\frac{ A _z}{ A }\right)=\cos ^{-1}\left(\frac{5}{\sqrt{(4 \sqrt{3})^2+(3 \sqrt{3})^2+5^2}}\right) $
$= \cos ^{-1}\left(\frac{5}{10}\right) \Rightarrow i =60^{\circ}$
$ \sqrt{2} \sin 60=\sqrt{3} \times \sin r $
$ r =45^{\circ}$
Difference between$ i \,\&\, r =60-45=15$

Answer: 1

Solution

image
$ E =\frac{ V }{ d }=\frac{\text { Potential barrier Across Junction }}{\text { width of Depletion layer }} $
$ =\frac{0.6 V }{6 \times 10^{-6} m }=1 \times 10^5 V / m$
$ =1 \times 10^5\, N / C$

JEE Main Chemistry Question Paper with Solution 2022 July 29th Shift 1 - Morning

A

$BCl _3$ and $SF _6$

B

$NO$ and $H _2 SO _4$

C

$SF _6$ and $H _2 SO _4$

D

$BCl _3$ and $NO$

Solution

(A)$BCl _3 \rightarrow$ Even Electron molecule
$SF _6 \rightarrow$ Expanded octet molecule
(B) $NO \rightarrow$ Odd Electron molecule
$H _2 SO _4 \rightarrow$ Expanded octet.
(C) $SF _6 \rightarrow$ Even Electron molecule
$H _2 SO _4 \rightarrow$ Expanded octet.
(D) $BCl _3 \rightarrow$ Even Electron molecule
$NO \rightarrow$ Odd Electron molecule

A

$H _2, 1.42$ moles

B

$H _2, 0.71$ moles

C

$N _2, 1.42$ moles

D

$N _2, 0.71$ moles

Solution

$ \underset{W _2=20\, g}{N _2( g )}+\underset{5\, g}{3 H _2( g )} \rightleftharpoons 2 NH _3( g )$
$ n =\frac{20}{28} \frac{5}{2}$
Stoichiometric Amount:
$N _2 \rightarrow \frac{20 / 28}{1}=\frac{20}{28} H _2 \rightarrow \frac{5 / 2}{3}=\frac{5}{6}$
$\therefore N _2$ is the Limiting Reagent.
$\therefore n \left( NH _3\right) =2 \times n \left( N _2\right)=2 \times \frac{20}{28} $
$=1.42$

A

Lyophilic sol

B

Lyophobic sol

C

Emulsion

D

Precipitate

Solution

Standard method for the preparation of lyophilic sol. (Discussed in lab Manual)

A

487

B

768

C

577

D

856

Solution

I. E : $Na < Al < Mg < Si$
$\therefore 496< IE ( Al )<737$
Option (C), matches the condition.
i.e $\text{IE}( Al )=577\, kJ\,mol ^{-1}$

A

Contamination of undesired earthy materials.

B

Contamination of metals, other than desired metal

C

Minerals which are naturally occuring in pure form

D

Magnetic impurities in an ore.

Solution

Earthy and undesired materials present in the ore, other then the desired metal, is known as gangue.

A

$Zn ( OH )_2$

B

$ZnO$

C

$\left[ Zn ( OH )_4\right]^{2-}$

D

$\left[ ZnO _2\right]^{2-}$

Solution

Zinc dissolves in excess of aqueous alkali
$Zn +2 OH ^{-}+2 H _2 O \rightarrow \underset{\text{Tetrahydroxozincate(II) ion}}{\left[ Zn ( OH )_4\right]^{2-}+ H _2 \uparrow}$
However, this reaction in NCERT is given as
$Zn +2 NaOH \rightarrow Na _2 ZnO _2+ H _2 \uparrow$
$ZnO _2^{2-}$ is anhydrous form of $\left[ Zn ( OH )_4\right]^{2-}$
So in aqueous medium best answer of this question is $\left[ Zn ( OH )_4\right]^{2-}$

A

$LiNO _2$ and $NaNO _2$

B

$Li _2 O$ and $Na _2 O$

C

$Li _2 O$ and $NaNO _2$

D

$LiNO _2$ and $Na _2 O$

Solution

$Li _2 O , NaNO _2$
As per NCERT Lithium nitrate when heated gives lithium oxide, $Li _2 O$, whereas other alkali metal nitrates decompose to give the corresponding nitrite.
$4 LiNO _3 \longrightarrow 2 Li _2 O +4 NO _2+ O _2$
$2 NaNO _3 \longrightarrow 2 NaNO _2+ O _2$
However, the decomposition product of $NaNO _3$ are temperature dependent process as shown in the below reaction.

A

$Sc ^{3+}, Zn ^{2+}$

B

$Ti ^{4+}, Cu ^{2+}$

C

$V ^{2+}, Ti ^{3+}$

D

$Zn ^{2+}, Mn ^{2+}$

Solution

image
No $d - d$ transitions in ions with $d ^{\circ} \,\&\, d ^{10}$ configuration. Therefore they are colourless.

A

5

B

1

C

0

D

3

Solution

$8 \overset{+7}{M}nO _4^-+3 S _2 O _3{ }^{2-}+ H _2 O \rightarrow 8 \overset{+4}{M}nO _2+6 SO _4{ }^{2-}+2 OH ^{-}$
Change in oxidation state of $Mn$ is from $+7$ to $+4$ which is 3 .

A

Aldrin and Dieldrin

B

Sodium chlorate and Aldrin

C

Sodium arsinate and Dieldrin

D

Sodium chlorate and sodium arsinite.

Solution

Both sodium chlorate and sodium arsenite behave as herbicide.

A

Seldane

B

Amytal

C

Aspartame

D

Prontosil

Solution

Amytal is hypnotic drug used to treat sleeping disorder.

Answer: 1000

Solution

$\frac{\ell}{ A }=129\, m ^{-1}$
KCl solution 1 :
$74.5\, ppm , R _1=100\, \Omega$
$KCl$ solution 2 :
$149 \,ppm , R _2=50 \,\Omega$
$149 \,ppm , R _2=50 \, \Omega$
Here, $\frac{ ppm _1}{ ppm _2}=\frac{ M _1}{ M _2}\left(=\frac{ W _1 / M _0}{ V } \times \frac{ V }{ W _2 / M _0}\right)$
$\frac{\wedge_1}{\wedge_2}=\frac{\kappa_1 \times \frac{1000}{M_1}}{\kappa_2 \times \frac{1000}{M_2}}$
$ =\frac{\kappa_1}{\kappa_2} \times \frac{M_2}{M_1}$
$ =\frac{50}{100} \times 2 $
$ =\frac{\wedge_1}{\wedge_2}=1,000 \times 10^{-3}$

Answer: 548

Solution

Heisenberg's uncertainty principle
$ \Delta x \times \Delta p _{ x } \geq \frac{ h }{4 \pi} $
$ \Rightarrow 2 a _0 \times m \Delta v _{ x }=\frac{ h }{4 \pi}(\text { minimum })$
$ \Rightarrow \Delta v _{ x }=\frac{ h }{4 \pi} \times \frac{1}{2 a _0} \times \frac{1}{ m } $
$ =\frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 2 \times 52.9 \times 10^{-12} \times 9.1 \times 10^{-31}}$
$ =548273\, ms ^{-1} $
$=548.273 \,km \,s ^{-1} $
$=548 \,km \,s ^{-1}$

Answer: 54

Solution

image
$ \Delta_{ r } H =40 \,m \,mol \times\left(57 \times 10^3\right) \frac{ J }{ mol } $
$=40 \times 10^{-3}\, mol \times 57 \times 10^3 \frac{ J }{ mol }$
$= 2280 J $
$ m S \Delta T =2280$
$ \Rightarrow 1000 mL \times \frac{1 gm }{ mL } \times 4,2 \times \Delta T =2280
$
$\Delta T =\frac{2280}{4.2} \times 10^{-3} $
$=\frac{22800}{42} \times 10^{-3}$
$= 542.86 \times 10^{-3}$
$\Delta T =54.286 \times 10^{-2} K$
$\Delta T =54.286 \times 10^{-20} C$
Ans. $54.286$
Answer mentioned as 54 (Closest integer)

Answer: 1

Solution

$ p = K _{ H } \times x$
$ \underset{\text{bar}}{0.920}=46.82 \times 10^3 \text { bar } \times \frac{\text { mol of } O _2}{\text { mol of } H _2 O }$
image
$0.920=46.82 \times n _{ o _2}$
$p =\frac{0.920}{46.82 \times 18}= n _{0_2}$
$ \Rightarrow 1.09 \times 10^{-3}= n _{0_2}$
$ \Rightarrow\, m \,mol\, of _2=1$

Answer: 282

Solution

$ K _{ sp }= S ^2 $
$S =\sqrt{ K _{ sp }}=\sqrt{8 \times 10^{-28}}=2 \sqrt{2} \times 10^{-14}$
$ =2.82 \times 10^{-14} $
$ =282 \times 10^{-16} $
Ans. =$282$

Answer: 1

Solution

In Tetrapeptide,
No. of Amino Acids $= 4 $
No. of Peptide bonds $= 3 $
Hence
Ans. $= 1$

JEE Main Mathematics Question Paper with Solution 2022 July 29th Shift 1 - Morning

A

600

B

660

C

540

D

720

Solution

Number of possible values of $a=60$, for $b=$ pq,
If $p =3, q =3,5,7,11,13,17,19$
If $p =5 q =5,7,11$
If $p =7 q =7$
Total cases $=60 \times 11=660$

A

244

B

224

C

245

D

265

Solution

$ z^5+(\bar{z})^5=(2+3 i)^5+(2-3 i)^5 $
$ =2\left({ }^5 C_0 2^5+{ }^5 C_2 2^3(3 i)^2+{ }^5 C_4 2^1(3 i)^4\right) $
$ =2(32+10 \times 8(-9)+5 \times 2 \times 81)=244$

A

The system of linear equations $AX =0$ has a unique solution

B

The system of linear equations $AX =0$ has infinitely many solutions

C

$B$ is an invertible matrix

D

adj (A) is an invertible matrix

Solution

$ AB =0 \Rightarrow| AB |=0 $
image
If $|A| \neq 0, B=0$ (not possible)
If $| B | \neq 0, A =0$ (not possible)
Hence $| A |=| B |=0$
$\Rightarrow AX =0$ has infinitely many solutions

A

198

B

202

C

212

D

218

Solution

By splitting
$ \frac{1}{20}\left[\left(\frac{1}{20-a}-\frac{1}{40-a}\right)+\left(\frac{1}{40-a}-\frac{1}{60-a}\right)\right. $
$\left.+\ldots+\left(\frac{1}{180-a}-\frac{1}{200-a}\right)\right] $
$ \Rightarrow \frac{1}{20}\left(\frac{1}{20-a}-\frac{1}{200-a}\right)=\frac{1}{256} $
$(20-a)(200-a)=256 \times 9 $
$ a^2-220 a+1696=0 $
$a=8,212$
Hence maximum value of a is $212$ .

A

$\alpha^2+\beta^2+\gamma^2=6$

B

$\alpha \beta+\beta \gamma+\gamma \alpha+1=0$

C

$\alpha \beta^2+\beta \gamma^2+\gamma \alpha^2+3=0$

D

$\alpha^2-\beta^2+\gamma^2=4$

Solution

$\displaystyle\lim _{x \rightarrow 0} \frac{\alpha\left(1+x+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\ldots\right)+\beta\left(1-x+\frac{x^2}{2 !}-\frac{x^3}{3 !}+\ldots\right)+\gamma\left(x-\frac{x^3}{3 !}+\ldots\right)}{\left.x^3\right)}$
constant terms should be zero
$\Rightarrow a+\beta=0$
coeff of $x$ should be zero
$\Rightarrow \alpha-\beta+\gamma=0$
coeff of $x^2$ should be zero
$\displaystyle\lim _{x \rightarrow 0} \frac{x^3\left(\frac{\alpha}{3 !}-\frac{\beta}{3 !}-\frac{\gamma}{3 !}\right)+x^4\left(\frac{\alpha}{3 !}-\frac{\beta}{3 !}-\frac{\gamma}{3 !}\right)}{x^3}=\frac{2}{3}$
$ \Rightarrow \frac{\alpha}{2}+\frac{\beta}{2}=0 $
$ \frac{\alpha}{6}-\frac{\beta}{6}-\frac{\gamma}{6}=2 / 3$
$ \Rightarrow \alpha=1, \beta=-1, \gamma=-2$

A

$\tan ^{-1}(2)$

B

$\tan ^{-1}(2)-\frac{\pi}{4}$

C

$\frac{1}{2} \tan ^{-1}(2)-\frac{\pi}{8}$

D

$\frac{1}{2}$

Solution

$I=\int\limits_0^{\frac{\pi}{2}} \frac{d x}{3+2 \sin x+\cos x}=\int\limits_0^{\frac{\pi}{2}} \frac{\sec ^2 \frac{x}{2} \cdot d x}{2 \tan ^2 \frac{x}{2}+4 \tan \frac{x}{2}+4}$
Put $\tan \frac{x}{2}=t$, so
$I=\int\limits_0^1 \frac{d t}{(t+1)^2+1}=\left.\tan ^{-1}(x+1)\right|_0 ^1=\tan ^{-1} 2-\frac{\pi}{4}$

A

$\frac{\pi}{4}$

B

$\frac{3 \pi}{4}$

C

$\frac{\pi}{2}$

D

$\frac{3 \pi}{2}$

Solution

$\frac{d y}{d x}+y=\frac{1}{1+e^{2 x}}$
So integrating factor is $e^{\int 1 . d x}=e^x$
So solution is $y \cdot e^x=\tan ^{-1}\left(e^x\right)+c$
Now as curve is passing through
$ \left(0, \frac{\pi}{2}\right) \text { so } $
$ \Rightarrow c=\frac{\pi}{4} $
$ \Rightarrow \displaystyle\lim _{x \rightarrow \infty}\left(y \cdot e^x\right)= \displaystyle\lim _{x \rightarrow \infty}\left(\tan ^{-1}\left(e^x\right)+\frac{\pi}{4}\right)=\frac{3 \pi}{4}$

A

$\frac{2}{\sqrt{5}}$

B

$\sqrt{\frac{3}{5}}$

C

$\frac{1}{\sqrt{5}}$

D

$\sqrt{\frac{2}{5}}$

Solution

Line is passing through intersection of $b x+10 y-8=0$ and $2 x-3 y=0$ is $(b x+10 y-8)+\lambda(2 x-3 y)=0$. As line is passing through $(1,1)$ so $\lambda=b+2$
Now line $(3 b+4) x-(3 b-4) y-8=0$ is tangent to circle $17\left(x^2+y^2\right)=16$
$ \text { So } \frac{8}{\sqrt{(3 b+4)^2+(3 b-4)^2}}=\frac{4}{\sqrt{17}}$
$\Rightarrow b^2=2 \Rightarrow e=\sqrt{\frac{3}{5}}$

A

1

B

$\sqrt{26}$

C

$2 \sqrt{2}$

D

$\sqrt{14}$

Solution

image
Let $B$ be foot of $\perp$ coordinates of $B =\left(-2, \frac{7}{2}, \frac{3}{2}\right)$
Direction ratio of line $AB$ is $\langle 2,1,3\rangle$ so $m=1, n=3$
So equation of $AC$ is $\frac{x+1}{3}=\frac{y-4}{-1}=\frac{z-3}{-4}=\lambda$
So point $C$ is $(3 \lambda-1,-\lambda+4,-4 \lambda+3)$. But
$C$ lies on the plane, so
$ 6 \lambda-2-\lambda+4-12 \lambda+9=4 $
$ \Rightarrow \lambda=1 \Rightarrow C(2,3,-1) $
$ \Rightarrow A C=\sqrt{26}$

A

$-5$

B

5

C

1

D

$-1$

Solution

$\vec{a}=3 \hat{i}+\hat{j}, \vec{b}=\hat{i}+2 \hat{j}+\hat{k}$
As $\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}+\lambda \vec{c}$
$\Rightarrow \vec{a} \cdot \vec{c}(\vec{b})-(\vec{a} \cdot \vec{b}) \vec{c}=\vec{b}+\lambda \vec{c}$
$ \Rightarrow \vec{a} \cdot \vec{c}=1, \vec{a} \cdot \vec{b}=-\lambda $
$\Rightarrow(3 \hat{ i }+\hat{ j }) \cdot(\hat{ i }+2 \hat{ j }+\hat{ k })=-\lambda $
$ \Rightarrow \lambda=-5$

A

$\frac{6}{5}$

B

$\frac{9}{5}$

C

$\frac{4}{3}$

D

$\frac{7}{3}$

Solution

image
given $OB =15$
$\cos \beta=\frac{3}{\sqrt{13}}$
image
$\tan \beta=\frac{2}{3}$
image
$\tan \beta=\frac{ h }{15}$
$\frac{2}{3}=\frac{h}{15} $
$ 10=h$
image
$OA ^2+ AB ^2=225 $
$OA ^2+81=225 $
$ OA =12$
image
$ \tan \alpha=\frac{10}{12} $
$ \cot \alpha=\frac{12}{10}=\frac{6}{5}$

A

$q \Rightarrow(p \wedge r)$

B

$p \Rightarrow( p \wedge r )$

C

$( p \wedge r ) \Rightarrow( p \wedge q )$

D

$( p \wedge q ) \Rightarrow r$

Solution

$( p \wedge q ) \Rightarrow( p \wedge r ) $
$ \sim( p \wedge q ) \vee( p \wedge r ) $
$ (\sim p \vee \sim q ) \vee( p \wedge r )$
$ (\sim p \vee( p \wedge r )) \vee \sim q$
$ (\sim p \vee p ) \wedge(\sim p \vee r ) \vee \sim q $
$ (\sim p \vee r ) \vee \sim q $
$ (\sim p \vee \sim q ) \vee r $
$ \sim( p \wedge q ) \vee r $
$ ( p \wedge q ) \Rightarrow r $

A

2

B

$\frac{4}{7}$

C

$\frac{2}{7}$

D

4

Solution

image
$m _{ PD }=0 $
$ D \left(\frac{ a + a }{2}, \frac{ b +3}{2}\right)$
$ D \left( a , \frac{ b +3}{2}\right)$
$ m _{ PD }=0$
$ \frac{ b +3}{2}-1=0$
$ b +3-2=0 $
$ b =-1 $
$ E \left(\frac{ b + a }{2}, \frac{5+ b }{2}\right)=\left(\frac{ af }{2}, 2\right) $
$m _{ CB } \cdot m _{ EP }=-1$
$ \left(\frac{5-b}{b-a}\right)=\left(\frac{2-1}{a-1}\right)=-1 $
$\left(\frac{6}{-1-a}\right)=\left(\frac{2}{a-3}\right)=-1$
$12=(1+a)(a-3) $
$12=a^2-3 a+a-3$
$\Rightarrow a^2-2 a-15=0 $
$ (a-5)(a+3)=0 $
$a=5 \text { or } a=-3 $
$ \text { Given } a b>0 $
$ a(-1) >0 $
$ -a >0$
$ a< 0$
$ a =-3 \text { Accept }$
$\text { AP line A }(-3,3) P (1,1) $
$ y-1=\left(\frac{3-1}{-3-1}\right)(x-1) $
$ -2 y +2= x -1 $
$ \Rightarrow x+2 y=3 \text { Appling }......$(1)
$ \text { Line } B C B(-1,5) $
$ \text { C }(-3,-1) $
$ (y-5)=\frac{6}{2}(x+1) $
$ y-5=3 x+3 $
$ y=3 x+8 $....(2)
Solving (1) & (2)
$x+2(3 x+8)=3$
$ \Rightarrow 7 x+16=3$
$7 x =-13 $
$x=-\frac{13}{7}$
$ y=3\left(-\frac{13}{7}\right)+8 $
$ =\frac{-39+56}{7} $
$y=\frac{17}{7} $
$ x+y=\frac{-13+17}{7}=\frac{4}{7} $

A

$90+27 \sqrt{2}$

B

$45+18 \sqrt{2}$

C

$90+3 \sqrt{2}$

D

$54+90 \sqrt{2}$

Solution

Sol. $ \hat{a}^{\wedge} \hat{b}=\frac{\pi}{4}=\phi$
$\hat{a} \cdot \hat{b}=|\hat{a}||\hat{ b }| \cos \phi$
$\hat{a} \cdot \hat{b}=\cos \phi=\frac{1}{\sqrt{2}}$
$\cos \theta=\frac{(\hat{a}+\hat{b}) \cdot(\hat{a}+2 \hat{b}+2(\hat{a} \times \hat{b}))}{|\hat{a}+\hat{b}||\hat{a}+2 \hat{b}+2(\hat{a} \times \hat{b})|}$
$|\hat{a}+\hat{b}|^2=(\hat{a}+\hat{b}) \cdot(\hat{a}+\hat{b})$
$|\hat{a}+\hat{b}|^2=2+2 \hat{a} \cdot \hat{b}$
$=2+\sqrt{2}$
$\hat{a} \times \hat{b}=|\hat{a}||\hat{b}| \sin \phi \hat{n}$
$\hat{ a } \times \hat{ b }=\frac{\hat{ n }}{\sqrt{2}} \quad$
when $\hat{ n }$ is vector $\perp \hat{ a }$ and $\hat{ b }$
let $\overrightarrow{ c }=\hat{ a } \times \hat{ b }$
We know.
$ \vec{c} \cdot \vec{a}=0$
$ \vec{c} \cdot \vec{b}=0 $
$ |\hat{a}+2 \hat{b}+2 \vec{c}|^2 $
$ =1+4+\frac{(4)}{2}+4 \hat{a} \cdot \hat{b}+8 \hat{b} \cdot \vec{c}+4 \vec{c} \cdot \hat{a}$
$=7+\frac{4}{\sqrt{2}}=7+2 \sqrt{2}$
Now
$(\hat{a}+\hat{b}) \cdot(\hat{a}+2 \hat{b}+2 \vec{c})$
$ =|\hat{a}|^2+2 \hat{a} \cdot \hat{b}+0+\hat{b} \cdot \hat{a}+2|\hat{b}|^2+0$
$=1+\frac{2}{\sqrt{2}}+\frac{1}{\sqrt{2}}+2 $
$ =3+\frac{3}{\sqrt{2}}$
$ \cos \theta=\frac{3+\frac{3}{\sqrt{2}}}{\sqrt{2+\sqrt{2}} \sqrt{7+2 \sqrt{2}}} $
$ \cos ^2 \theta=\frac{9(\sqrt{2}+1)^2}{2(2+\sqrt{2})(7+2 \sqrt{2})}$
$ \cos ^2 \theta=\left(\frac{9}{2 \sqrt{2}}\right) \frac{(\sqrt{2}+1)}{(7+2 \sqrt{2})}$
$ 164 \cos ^2 \theta=\frac{(82)(9)}{\sqrt{2}} \frac{(\sqrt{2}+1)}{(7+2 \sqrt{2})} \frac{(7-2 \sqrt{2})}{(7-2 \sqrt{2})} $
$ =\frac{(82)}{\sqrt{2}} \frac{(9)[7 \sqrt{2}-4+7-2 \sqrt{2}]}{(41)}$
$ =(9 \sqrt{2})[5 \sqrt{2}+3]$
$ =90+27 \sqrt{2}$

A

9

B

$\frac{9}{2}$

C

$\frac{9}{\log _e(10)}$

D

$\frac{9}{2 \log _c(10)}$

Solution

$ f \left( e ^3\right)=\int\limits_1^{ e ^3} \frac{\ell nt }{\ln 10(1+ t )} dt \ldots . . .(1) $
$ f (\alpha)=\int\limits_1^a \frac{\ell nt }{(\ln 10)(1+ t )} dt $
$ t =\frac{1}{ x } \Rightarrow x =\frac{1}{ t }$
$ dt =\frac{-1}{ x ^2} dx $
$=\int\limits_1^{\frac{1}{\alpha}} \frac{-\ell \ln x}{(\ell \ln 10)\left(1+\frac{1}{x}\right)}\left(-\frac{1}{x^2}\right) d x $
$ f(\alpha)=\frac{1}{\ell \ln 10} \int\limits_1^{\frac{1}{\alpha}} \frac{\ell nx }{ x ( x +1)} dx$
$ f \left( e ^{-3}\right)=\frac{1}{\ell \ln 10} \int\limits_1^{c^3} \frac{\ell nt }{ t ( t +1)} dt \ldots \ldots \ldots$
Add (1) & (2)
$f\left(e^3\right)+f\left(e^{-3}\right)$
$ =\left(\frac{1}{\ell n 10}\right) \int\limits_1^{ c ^3} \frac{\ell nt }{(1+ t )}\left[1+\frac{1}{ t }\right] dt $
$ =\left(\frac{1}{\ell n 10}\right) \int\limits_1^3 \frac{\ell nt }{ t } dt $
$ \ell nt = r $
$ \frac{ dt }{ t }= dr $
$ =\frac{1}{\ell n 10} \int\limits_0^3 rdr $
$ =\left.\left(\frac{1}{\ell n 10}\right)\left(\frac{ r ^2}{2}\right)\right|_0 ^3 $
$=\left(\frac{1}{\log 10}\right)\left(\frac{9}{2}\right)$
$ =\frac{9}{2 \log _{ e } 10}$

A

$\frac{5}{2} \sin ^{-1}\left(\frac{3}{5}\right)-\frac{1}{2}$

B

$\frac{5 \pi}{4}-\frac{3}{2}$

C

$\frac{3 \pi}{4}+\frac{3}{2}$

D

$\frac{5 \pi}{4}-\frac{1}{2}$

Solution

image
$|x-1|< y< \sqrt{5-x^2}$
When $|x-1|=\sqrt{5-x^2}$
$ \Rightarrow(x-1)^2=5-x^2$
$\Rightarrow x^2-x-2=0 $
$ \Rightarrow x=2,-1$
Required Area $=$ Area of $\triangle ABC +$ Area of region $BCD$
$=\frac{1}{2}\begin{vmatrix}1 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 2 & 1\end{vmatrix}+\frac{\pi}{4}(\sqrt{5})^2-\frac{1}{2}(\sqrt{5})^2$
$=\frac{5 \pi}{4}-\frac{1}{2}$

A

$2 \sqrt{6}$

B

$2 \sqrt{14}$

C

$4 \sqrt{6}$

D

$4 \sqrt{14}$

Solution

image
$ O (0,0) $
$ H : \frac{ x ^2}{4}-\frac{ y ^2}{4}=1$
Focus (ae, 0)
$F (2 \sqrt{2}, 0)$
Line $L: y=m x+c$ pass $(1,0)$
$o = m + C$
Line $L$ is tangent to Hyperbola. $\frac{ x ^2}{4}-\frac{ y ^2}{4}=1$
$ C=\pm \sqrt{a^2 m^2-\ell^2} $
$ C=\pm \sqrt{4 m^2-4}$
From (1)
$-m=\pm \sqrt{4 m^2-4}$
Squaring
$m^2=4 m^2-4$
$ 4=3 m^2 $
$\frac{2}{\sqrt{3}}=m \quad(\text { as } m>0) $
$ C=-m$
$ C=\frac{-2}{\sqrt{3}} $
$ y =\frac{2 x }{\sqrt{3}}-\frac{2}{\sqrt{3}}$
$ y ^2=4 x$
$ \Rightarrow\left(\frac{2 x-2}{\sqrt{3}}\right)^2=4 x $
$\Rightarrow x ^2+1-2 x =3 x $
$ \Rightarrow x ^2-5 x +1=0$
$ y^2=4\left(\frac{\sqrt{3} y+2}{2}\right)$
$ y^2=2 \sqrt{3} y+4 $
$ \Rightarrow y^2-2 \sqrt{3} y-4=0$
Area
$ \left|\frac{1}{2}\right| \begin{vmatrix}0 & x _1 & 2 \sqrt{2} & x _2 & 0 \\0 & y _1 & 0 & y _2 & 0\end{vmatrix}||$
$=\left|\frac{1}{2}\left[-2 \sqrt{2} y _1+2 \sqrt{2} y _2\right]\right|$
$ =\sqrt{2}\left| y _2- y _1\right|=\frac{(\sqrt{2}) \sqrt{12+16}}{111}$
$ =\sqrt{56} $

A

1

B

2

C

3

D

4

Solution

$f(x)=|x-1| \cos |x-2| \sin |x-1|+(x-3)\left|x^2-5 x+4\right|$
$ =|x-1| \cos |x-2| \sin |x-1|+(x-3)|x-1||x-4|$
$ =|x-1|[\cos |x-2| \sin |x-1|+(x-3)|x-4|]$
Non differentiable at $x=1$ and $x=4$.

A

$\frac{128}{1011}$

B

$\frac{166}{1011}$

C

$\frac{127}{337}$

D

$\frac{112}{337}$

Solution

Total number of elements $=2022$
$ 2022=2 \times 3 \times 337 $
$ \operatorname{HCF}( n , 2022)=1$
is feasible when the value of ' $n$ ' and 2022 has no common factor.
$A =$ Number which are divisible by 2 from $\{1,2,3 \ldots . .2022\}$
$n ( A )=1011$
$B=$ Number which are divisible by 3 by 3
from $\{1,2,3 \ldots \ldots 2022\}$
$n(B)=674$
$A \cap B=$ Number which are divisible by 6
from $\{1,2,3 \ldots \ldots . .2022\}$
$6,12,18 \ldots \ldots . ., 2022$
$337= n ( A \cap B )$
$n ( A \cup B )= n ( A )+ n ( B )- n ( A \cap B )$
$=1011+674-337$
$=1348$
$C =$ Number which divisible by 337 from $\{1, \ldots \ldots . .1022\}$
image
Total elements which are divisible by 2 or 3 or 337
$=1348+2=1350$
Favourable cases $=$ Element which are neither divisible by 2,3 or 337
$ =2022-1350$
$ =672$
Required probability $=\frac{672}{2022}=\frac{112}{337}$

A

Only P and $Q$

B

Only P and R

C

Only Q and R

D

All, P, Q and R

Solution

$ f ( x )=81 \cdot 3^{\left( x ^2-2\right)^3} $
$f ^{\prime}( x )=81 \cdot 3^{\left( x ^2-2\right)^3} \cdot \ln 3 \cdot 3\left( x ^2-2\right)^2 \cdot 2 x$
$ =(81 \times 6) 3^{\left( x ^2-2\right)^3} \times\left( x ^2-2\right)^2 \ln 3$
image
$f ^{\prime}( x )=\underbrace{(486 \cdot \ln 3)}_{ k } \underbrace{3^{\left( x ^2-2\right)^3} x\left( x ^2-2\right)^2}_{ g ( x )}$
$g ^{\prime}( x )=3^{\left( x ^2-2\right)^3}\left( x ^2-2\right)^2+ x \cdot 3^{\left( x ^2-2\right)^3} \cdot 4 x \cdot\left( x ^2-2\right) $
$ + x \cdot\left( x ^2-2\right)^2 \cdot 3^{\left( x ^2-2\right)^3} \ln 3 \cdot 3\left( x ^2-2\right)^2 \cdot 2 x$
$ =3^{\left(x^2-2\right)^3}\left( x ^2-2\right)\left[ x ^2-2+4 x ^2+6 x ^2 \ln 3\left( x ^2-2\right)^3\right] $
$ g ^{\prime}( x )=3^{\left(x^2-2\right)^3}\left( x ^2-2\right)\left[5 x ^2-2+6 x ^2 \ln 3\left( x ^2-2\right)^3\right] $
$ f ^{\prime \prime}( x )= k \cdot g ^{\prime}( x )$
$f ^{\prime \prime}(\sqrt{2})=0, f ^{\prime \prime}\left(\sqrt{2}+>0, f ^{\prime}(\sqrt{2})<0\right. $
$ x^{-}=\sqrt{2} \text { is point of inflection }$
$ f ^{\prime \prime}( x ) >0 \text { for } x >\sqrt{2} \text { so } f ^{\prime}( x ) \text { is increasing }$

Answer: 16

Solution

$ 7 \cos ^2 \theta-3 \sin ^2 \theta-2 \cos ^2 2 \theta=2 $
$ 4 \cos ^2 \theta+3 \cos 2 \theta-2 \cos ^2 2 \theta=2$
$ 2(1+\cos 2 \theta)+3 \cos 2 \theta-2 \cos ^2 2 \theta=2 $
$ 2 \cos ^2 2 \theta-5 \cos 2 \theta=0$
$ \cos 2 \theta(2 \cos 2 \theta-5)=0 $
$ \cos 2 \theta=0$
$ 2 \theta=(2 n+1) \frac{\pi}{2} $
$ \theta=(2 n+1) \frac{\pi}{4} $
$ S=\left\{\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\right\}$
For all four values of $\theta$
$x^2-2\left(\tan ^2 \theta+\cot ^2 \theta\right) x+6 \sin ^2 \theta=0$
$\Rightarrow x^2-4 x+3=0$
Sum of roots of all four equations $=4 \times 4= 16.$

Answer: 4

Solution

$\sum x_1=15 \times 20=300$...(i)
$ \frac{\sum x_1^2}{20}-(15)^2=9$...(ii)
$ \sum x_1^2=234 \times 20=4680 $
$ \frac{\sum\left(x_1+\alpha\right)^2}{20}=178 \Rightarrow \sum\left(x_1+\alpha\right)^2=3560$
$ \Rightarrow \sum x_1^2+2 \alpha \sum x_1+\sum \alpha^2=3560$
$ 4680+600 \alpha+20 \alpha^2=3560 $
$ \Rightarrow \alpha^2+30 \alpha+56=0 $
$ \Rightarrow(\alpha+28)(\alpha+2)=0 $
$\alpha=-2,-28$
Square of maximum value of $\alpha$ is 4

Answer: 10

Solution

$ (a,-4 a,-7) \perp \text { to }(3,-1,2 b) $
$ a=2 b$...(i)
$ (a,-4 a,-7) \perp \text { to }(b, a,-2) $
$ 3 a+4 a-14 b=0$
$a b-4 a^2+14=0$....(ii)
From Equations (i) and (ii)
$ 2 b^2-16 b^2+14=0$
$ b^2=1$
$ a^2=4 b^2=4 $
$ \frac{x+1}{5}=\frac{y-2}{3}=\frac{z}{1}=k $
$ \alpha=5 k-1, \beta=3 k+2, \gamma=k$
As $(\alpha, \beta, \gamma)$ satisfies $x-y+z=0$
$ 5 k -1-(3 k +2)+ k =0 $
$ k =1$
$ \therefore \alpha+\beta+\gamma=9 k +1=10$

Answer: 16

Solution

$S=\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+\ldots$
$\frac{\frac{S}{2}=\frac{a_1}{2^2}+\frac{a_2}{2^3}+\ldots}{\frac{S}{2}=\frac{a_1}{2}+d\left(\frac{1}{2^2}+\frac{1}{2^3}+\ldots\right)}$
$ \frac{S}{2}=\frac{a_1}{2}+d\left(\frac{\frac{1}{4}}{1-\frac{1}{2}}\right) $
$ \therefore S=a_1+d=a_2=4$
Or $4 a_2=16$

Answer: 84

Solution

$ \frac{T_5}{T_{n-3}}=\frac{{ }^n C_4\left(2^{1 / 4}\right)^{n-4}\left(3^{-1 / 4}\right)^4}{{ }_{n-4}\left(2^{1 / 4}\right)^4\left(3^{-1 / 4}\right)^{n-4}}=\frac{\sqrt[4]{6}}{1}$
$ \Rightarrow 2^{\frac{n-8}{4}} 3^{\frac{n-8}{4}}=6^{1 / 4}$
$ \Rightarrow 6^{n-8}=6 $
$ \Rightarrow n-8=1 \Rightarrow n=9 $
$ T_6={ }^9 C_5\left(2^{1 / 4}\right)^4\left(3^{-1 / 4}\right)^5=\frac{84}{\sqrt[4]{3}} $
$ \therefore \alpha=84$

Answer: 282

Solution

$A =\begin{bmatrix} a _{11} & a _{12} & a _{13} \\ a _{21} & a _{22} & a _{23} \\ a _{31} & a _{32} & a _{33}\end{bmatrix}a _{ ij } \in\{0,1\}$
$ \sum a _{ ij }=2,3,5,7 $
Total matrix $={ }^9 C _2+{ }^9 C _3+{ }^9 C _5+{ }^9 C _7$
$=282$

Answer: 4

Solution

$\Delta=\begin{vmatrix}p ! & (p+1) ! & (p+2) ! \\(p+1) ! & (p+2) ! & (p+3) ! \\(p+2) ! & (p+3) ! & (p+4) !\end{vmatrix}$
$\Delta=P !(P+1) !( P +2) !\begin{vmatrix}1 & 1 & 1 \\ P +1 & P +2 & P +3 \\ ( P +2)( P +1) & ( P +3)( P +2) & ( P +4)( P +3)\end{vmatrix}$
$\Delta=2 P !( P +1) !( P +2) !$
Which is divisible by $P ^\alpha \&( P +2)^\beta$
$\therefore \alpha=3, \beta=1$

Answer: 286

Solution

$ \frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots . .+\frac{1}{100.101 .102}=\frac{ k }{101} $
$ \frac{4-2}{2.3 .4}+\frac{5-3}{3.4 .5}+\ldots . .+\frac{102-100}{100.101 .102}=\frac{2 k }{101}$
$ \frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+\ldots . .+\frac{1}{100.101}-\frac{1}{101.102}=\frac{2 k }{101}$
$ \frac{1}{2.3}-\frac{1}{101.102}=\frac{2 k }{101}$
$ \therefore 2 k =\frac{101}{6}-\frac{1}{102} $
$ \therefore 34 k =286$

Answer: 11

Solution

$ S =\{4,6,9\} \quad T =\{9,10,11 \ldots .1000\} $
$A \left\{ a _1+ a _2+\ldots . .+ a _{ k }: K \in N \right\} \& a _{ i } \in S$
Here by the definition of set 'A'
$A=\{a: a=4 x+6 y+9 z\}$
Except the element 11, every element of set $T$ is of the form $4 x+6 y+9 z$ for some
$ x , y , z \in W$
$\therefore T - A =\{11\}$

Answer: 12

Solution

Image of centre $c_1 \equiv(1,3)$ in $x-y+1=0$ is given by
$ \frac{x_1-1}{1}=\frac{y_1-3}{-1}=\frac{-2(1-3+1)}{1^2+1^2} $
$\Rightarrow x_1=2, y_1=2$
$\therefore$ Centre of circle $c _2 \equiv(2,2)$
$\therefore$ Equation of $c _2$ be
$x^2+y^2-4 x-4 y+\frac{38}{5}=0$
Now radius of $c_2$ is $\sqrt{4+4-\frac{38}{5}}=\sqrt{\frac{2}{5}}=r$ $\left(\text { radius of } c_1\right)^2=\left(\text { radius of } c_2\right)^2$
$ \Rightarrow 10-\alpha=\frac{2}{5} \Rightarrow \alpha=\frac{48}{5} $
$ \therefore \alpha+6 r ^2=\frac{48}{5}+\frac{12}{5}=12$