Q.
Let the mean and the variance of 20 observations x1,x2,…x20 be 15 and 9 , respectively. For α∈R, if the mean of (x1+α)2,(x2+α)2,…,(x20+α)2 is 178 , then the square of the maximum value of α is equal to
∑x1=15×20=300...(i) 20∑x12−(15)2=9...(ii) ∑x12=234×20=4680 20∑(x1+α)2=178⇒∑(x1+α)2=3560 ⇒∑x12+2α∑x1+∑α2=3560 4680+600α+20α2=3560 ⇒α2+30α+56=0 ⇒(α+28)(α+2)=0 α=−2,−28
Square of maximum value of α is 4