Q.
Let the mirror image of a circle c1:x2+y2−2x−6y+α=0 in line y=x+1
be c2:5x2+5y2+10gx+10fy+38=0.
If r is the radius of circle c2, then α+6r2 is equal to
Image of centre c1≡(1,3) in x−y+1=0 is given by 1x1−1=−1y1−3=12+12−2(1−3+1) ⇒x1=2,y1=2 ∴ Centre of circle c2≡(2,2) ∴ Equation of c2 be x2+y2−4x−4y+538=0
Now radius of c2 is 4+4−538=52=r( radius of c1)2=( radius of c2)2 ⇒10−α=52⇒α=548 ∴α+6r2=548+512=12